15 research outputs found

    Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya

    Get PDF
    BackgroundIndoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship.MethodsWHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05%), permethrin (0.75%) and deltamethrin (0.05%). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies.ResultsWHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3%), and two sites were moderately resistant to these insecticides (80.4 - 87.2%). Homozygote kdr mutations of L1014S ranged from 73 to 88% in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7-31%) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75% mortality after six months) and with the age of LLINs (60% mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6-93.5% mortality) and new LLINs (77.5-85.0% mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6-85.0%) than laboratory reared susceptible strain (100%). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05).ConclusionThis study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools

    Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission

    No full text
    Abstract Background The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. Methods Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. Results Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. Conclusions The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species. Graphical Abstrac

    Gaps between Knowledge and Malaria Treatment Practices after Intensive Anti-Malaria Campaigns in Western Kenya: 2004-2016.

    No full text
    Effective case management is central for malaria control, but not all of those affected by malaria have access to prompt, effective treatment. In Kenya, free malaria treatment has been implemented since 2006. However, questions remain regarding effective treatment. We conducted cross-sectional epidemiological and questionnaire surveys in four counties in western Kenya in 2004, 2010, and 2016, and antimalarial availability surveys in 2016. We found a significant decline in self-reported malaria cases and an improvement in knowledge of malaria prevention and treatment since 2004. Parasite prevalence declined significantly from 2004 to 2010; however, it has remained unchanged since then. Artemisinin-based combination therapies (ACTs) and sulfadoxine-pyrimethamine (SP) drugs were widely available everywhere. The proportion of ACT usage increased from none in 2004 to 48% and 69%, respectively, in 2010 and 2016, whereas SP drug usage declined from 88% in 2004 to 39% in 2010 and 27% in 2016. During the 2016 survey, non-intermittent preventive treatment in pregnancy use of SP was common (20.9% of all surveyed individual treatments). In 2004, 27.2% (168/617) of households sought hospital treatment alone, and this number increased to 50.6% in 2016. The key factors affecting treatment-seeking behavior were education level, wealth index, household size, and distance to hospitals. Our results indicated that gaps in malaria case management remain and out-of-policy treatment is still a concern

    Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya

    No full text
    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region

    Additional file 4 of Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission

    No full text
    Additional file 4: Table S2. Horizontal transmission of Microsporidia MB between Anopheles gambiae s.s. adults reared together in cages. Values indicate intensities of Microsporidia MB infection in donor male/female and recipient male/female An. gambiae s.s. individuals reared together in a cage

    Additional file 2 of Microsporidia MB in the primary malaria vector Anopheles gambiae sensu stricto is avirulent and undergoes maternal and horizontal transmission

    No full text
    Additional file 2: Figure S2. Microsporidia MB infection intensities in An. gambiae s.s. influence the rate of transmission to offspring. A Correlation of Go Microsporidia MB intensities with average G1 Microsporidia MB densities [r2 = 0.1276, P = 0.268, number of broods = 18]. B Correlation between G0 Microsporidia MB intensities and Microsporidia MB transmission to offspring (r2 = 0.625, P = 0.0056, n = 18)
    corecore