7 research outputs found

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    No full text
    10.1371/journal.pgen.1004876PLoS ONE111e100487

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK) : an international, randomised, controlled trial

    No full text
    Background: Observational studies have suggested that accelerated surgery is associated with improved outcomes in patients with a hip fracture. The HIP ATTACK trial assessed whether accelerated surgery could reduce mortality and major complications. Methods: HIP ATTACK was an international, randomised, controlled trial done at 69 hospitals in 17 countries. Patients with a hip fracture that required surgery and were aged 45 years or older were eligible. Research personnel randomly assigned patients (1:1) through a central computerised randomisation system using randomly varying block sizes to either accelerated surgery (goal of surgery within 6 h of diagnosis) or standard care. The coprimary outcomes were mortality and a composite of major complications (ie, mortality and non-fatal myocardial infarction, stroke, venous thromboembolism, sepsis, pneumonia, life-threatening bleeding, and major bleeding) at 90 days after randomisation. Patients, health-care providers, and study staff were aware of treatment assignment, but outcome adjudicators were masked to treatment allocation. Patients were analysed according to the intention-to-treat principle. This study is registered at ClinicalTrials.gov (NCT02027896). Findings: Between March 14, 2014, and May 24, 2019, 27 701 patients were screened, of whom 7780 were eligible. 2970 of these were enrolled and randomly assigned to receive accelerated surgery (n=1487) or standard care (n=1483). The median time from hip fracture diagnosis to surgery was 6 h (IQR 4\u20139) in the accelerated-surgery group and 24 h (10\u201342) in the standard-care group (p&lt;0\ub70001). 140 (9%) patients assigned to accelerated surgery and 154 (10%) assigned to standard care died, with a hazard ratio (HR) of 0\ub791 (95% CI 0\ub772 to 1\ub714) and absolute risk reduction (ARR) of 1% ( 121 to 3; p=0\ub740). Major complications occurred in 321 (22%) patients assigned to accelerated surgery and 331 (22%) assigned to standard care, with an HR of 0\ub797 (0\ub783 to 1\ub713) and an ARR of 1% ( 122 to 4; p=0\ub771). Interpretation: Among patients with a hip fracture, accelerated surgery did not significantly lower the risk of mortality or a composite of major complications compared with standard care. Funding: Canadian Institutes of Health Research
    corecore