27 research outputs found

    High Yield Production Process for Shigella Outer Membrane Particles

    Get PDF
    Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link

    Potential and limits of acylcyclohexanediones for the control of blossom blight in apple and pear caused by Erwinia amylovora

    No full text
    Growth-regulating acylcyclohexanediones such as prohexadione-calcium and trinexapac-ethyl have been shown to be effective in controlling fire blight infections on shoots. Since blossoms represent the primary site of infection for the fire blight pathogen, Erwinia amylovora, trinexapac-ethyl and prohexadione-calcium were evaluated for their ability to reduce fire blight infection on apple and pear flowers. Field experiments and experiments under controlled conditions were conducted on apple flowers for 4 years. A reduction of up to 50% of blossom blight was observed in treated plants. In addition, treatment with trinexapac-ethyl reduced up to the 77% the percentage of fireblight-affected flowers from which disease progressed into shoots. On pear, numbers of flower infections were reduced by a quarter and flower infections leading to diseased shoots was reduced by up to 50%. Mechanisms underlying diseased reduction following treatment with the two acylcyclohexanediones was studied using a confocal laser scanning microscope combined with a gpf-labelled strain of E. amylovora. These non-invasive techniques demonstrated bacterial migration was reduced by up to 60 and 66% in apple and pear xylem, respectively
    corecore