13 research outputs found

    The German National Pandemic Cohort Network (NAPKON): rationale, study design and baseline characteristics

    Get PDF
    Schons M, Pilgram L, Reese J-P, et al. The German National Pandemic Cohort Network (NAPKON): rationale, study design and baseline characteristics. European Journal of Epidemiology . 2022.The German government initiated the Network University Medicine (NUM) in early 2020 to improve national research activities on the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. To this end, 36 German Academic Medical Centers started to collaborate on 13 projects, with the largest being the National Pandemic Cohort Network (NAPKON). The NAPKON's goal is creating the most comprehensive Coronavirus Disease 2019 (COVID-19) cohort in Germany. Within NAPKON, adult and pediatric patients are observed in three complementary cohort platforms (Cross-Sectoral, High-Resolution and Population-Based) from the initial infection until up to three years of follow-up. Study procedures comprise comprehensive clinical and imaging diagnostics, quality-of-life assessment, patient-reported outcomes and biosampling. The three cohort platforms build on four infrastructure core units (Interaction, Biosampling, Epidemiology, and Integration) and collaborations with NUM projects. Key components of the data capture, regulatory, and data privacy are based on the German Centre for Cardiovascular Research. By April 01, 2022, 34 university and 40 non-university hospitals have enrolled 5298 patients with local data quality reviews performed on 4727 (89%). 47% were female, the median age was 52 (IQR 36-62-) and 50 pediatric cases were included. 44% of patients were hospitalized, 15% admitted to an intensive care unit, and 12% of patients deceased while enrolled. 8845 visits with biosampling in 4349 patients were conducted by April 03, 2022. In this overview article, we summarize NAPKON's design, relevant milestones including first study population characteristics, and outline the potential of NAPKON for German and international research activities.Trial registration https://clinicaltrials.gov/ct2/show/NCT04768998 . https://clinicaltrials.gov/ct2/show/NCT04747366 . https://clinicaltrials.gov/ct2/show/NCT04679584. © 2022. The Author(s)

    Imaging of the internal nasal valve using long-range Fourier domain optical coherence tomography.

    No full text
    Objectives/hypothesisTo evaluate for the first time the feasibility and methodology of long-range Fourier domain optical coherence tomography (LR-OCT) imaging of the internal nasal valve (INV) area in healthy individuals.Study designProspective individual cohort study.MethodsFor 16 individuals, OCT was performed in each nare. The angle and the cross-sectional area of the INV were measured. OCT images were compared to corresponding digital pictures recorded with a flexible endoscope.ResultsINV angle measured by OCT was found to be 18.3° ± 3.1° (mean ± standard deviation). The cross-sectional area was 0.65 ± 0.23 cm(2) . The INV angle measured by endoscopy was 18.8° ± 6.9°. There was no statistically significant difference between endoscopy and OCT concerning the mean INV angle (P = .778), but there was a significant difference in test precision (coefficient of variance 50% vs. 15%; P < .001).ConclusionsLR-OCT proved to be a fast and easily performed method. OCT could accurately quantify the INV area. The values of the angle and the cross-sectional area of the INV were reproducible and correlated well with the data seen with other methods. Changes in size could be reliably delineated. Endoscopy showed similar values but was significantly less precise.Level of evidence2b. Laryngoscope, 126:E97-E102, 2016

    In vivo imaging of the internal nasal valve during different conditions using optical coherence tomography.

    No full text
    ObjectivePreviously, we proposed long-range optical coherence tomography (LR-OCT) to be an effective method for the quantitative evaluation of the nasal valve geometry. Here, the objective was to quantify the reduction in the internal nasal valve angle and cross-sectional area that results in subjective nasal airway obstruction and to evaluate the dynamic behavior of the valve during respiration using LR-OCT.MethodsFor 16 healthy individuals, LR-OCT was performed in each naris during: 1) normal respiration, 2) peak forced inspiration, 3) lateral nasal wall depression (to the onset of obstructive symptoms), and 4) after application of a topical decongestant. The angle and the cross-sectional area of the valve were measured.ResultsA reduction of the valve angle from 18.3° to 14.1° (11° in Caucasians and 17° in Asians) and a decrease of the cross-sectional area from 0.65 cm2 to 0.55 cm2 led to subjective nasal obstruction. Forceful breathing did not significantly change the internal nasal valve area in healthy individuals. Application of nasal decongestant resulted in increased values.ConclusionLR-OCT proved to be a fast and readily performed method for the evaluation of the dynamic behavior of the nasal valve. The values of the angle and the cross-sectional area of the valve were reproducible, and changes in size could be accurately delineated.Level of evidence2b. Laryngoscope, 128:E105-E110, 2018

    High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7micrometers

    No full text
    Abstract not availableZhonglie Piao, Teng Ma, Jiawen Li, Maximilian T. Wiedmann, Shenghai Huang, Mingyue Yu, K. Kirk Shung, Qifa Zhou, Chang-Seok Kim and Zhongping Che

    Long-Range Optical Coherence Tomography of the Neonatal Upper Airway for Early Diagnosis of Intubation-related Subglottic Injury.

    No full text
    RationaleSubglottic edema and acquired subglottic stenosis are potentially airway-compromising sequelae in neonates following endotracheal intubation. At present, no imaging modality is capable of in vivo diagnosis of subepithelial airway wall pathology as signs of intubation-related injury.ObjectivesTo use Fourier domain long-range optical coherence tomography (LR-OCT) to acquire micrometer-resolution images of the airway wall of intubated neonates in a neonatal intensive care unit setting and to analyze images for histopathology and airway wall thickness.MethodsLR-OCT of the neonatal laryngotracheal airway was performed a total of 94 times on 72 subjects (age, 1-175 d; total intubation, 1-104 d). LR-OCT images of the airway wall were analyzed in MATLAB. Medical records were reviewed retrospectively for extubation outcome.Measurements and main resultsBackward stepwise regression analysis demonstrated a statistically significant association between log(duration of intubation) and both laryngeal (P < 0.001; multiple r(2) = 0.44) and subglottic (P < 0.001; multiple r(2) = 0.55) airway wall thickness. Subjects with positive histopathology on LR-OCT images had a higher likelihood of extubation failure (odds ratio, 5.9; P = 0.007). Longer intubation time was found to be significantly associated with extubation failure.ConclusionsLR-OCT allows for high-resolution evaluation and measurement of the airway wall in intubated neonates. Our data demonstrate a positive correlation between laryngeal and subglottic wall thickness and duration of intubation, suggestive of progressive soft tissue injury. LR-OCT may ultimately aid in the early diagnosis of postintubation subglottic injury and help reduce the incidences of failed extubation caused by subglottic edema or acquired subglottic stenosis in neonates. Clinical trial registered with www.clinicaltrials.gov (NCT 00544427)
    corecore