36 research outputs found

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Mid-infrared spectroscopy of alkali feldspar samples for space application

    No full text
    Feldspars are major components of terrestrial planetary surfaces. For future space application and the setup of a comprehensive reference database, Na- and K-rich alkali feldspars, NaAlSi3O8 – KAlSi3O8, have been investigated by infrared reflectance spectroscopy. We related the feldspar spectra to the chemical composition and state of Al,Si order/disorder. The infrared measurements were analyzed with respect to band shifts and peak shapes using the autocorrelation function. Natural samples served as starting materials. Some samples were treated by the alkali exchange method to produce pure end-members, which were then heated to generate various states of Al,Si disorder. X-ray diffraction (XRD) methods served to determine the Al,Si distribution. Our autocorrelation allowed to differentiate between the compositional and the order/disorder influences seen in the spectra in the wavelength range between 7 ÎŒm up to 14 ÎŒm (1429 cm− 1 to 714 cm− 1). Space missions often analyze the surfaces of planetary bodies using remote sensing. Therefore, our results are essential to characterize and distinguish alkali feldspars on the surfaces of terrestrial planetary bodies like Mercury.Deutsches Zentrum fĂŒr Luft- und Raumfahrt https://doi.org/10.13039/50110000294

    Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers

    No full text
    The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques

    Mid-infrared spectroscopy of alkali feldspar samples for space application

    Get PDF
    Feldspars are major components of terrestrial planetary surfaces. For future space application and the setup of a comprehensive reference database, Na- and K-rich alkali feldspars, NaAlSi3O8 – KAlSi3O8, have been investigated by infrared reflectance spectroscopy. We related the feldspar spectra to the chemical composition and state of Al,Si order/disorder. The infrared measurements were analyzed with respect to band shifts and peak shapes using the autocorrelation function. Natural samples served as starting materials. Some samples were treated by the alkali exchange method to produce pure end-members, which were then heated to generate various states of Al,Si disorder. X-ray diffraction (XRD) methods served to determine the Al,Si distribution. Our autocorrelation allowed to differentiate between the compositional and the order/disorder influences seen in the spectra in the wavelength range between 7 ÎŒm up to 14 ÎŒm (1429 cm− 1 to 714 cm− 1). Space missions often analyze the surfaces of planetary bodies using remote sensing. Therefore, our results are essential to characterize and distinguish alkali feldspars on the surfaces of terrestrial planetary bodies like Mercury
    corecore