24 research outputs found

    Croissance et transfert de graphĂšne pour la fabrication d'Ă©lectrodes transparentes

    Get PDF
    Ce mĂ©moire de maĂźtrise porte sur la caractĂ©risation et l’optimisation d’électrodes transparentes et conductrices de graphĂšne. Nous avons utilisĂ© un procĂ©dĂ© de croissance CVD Ă  basse pression, avec du mĂ©thane comme source de carbone et du cuivre comme support et catalyseur de croissance, pour synthĂ©tiser le graphĂšne. Les couches de graphĂšne ainsi dĂ©posĂ©es sont complĂštes et uniformes, tel qu’observĂ© par microscopie Ă©lectronique Ă  balayage et par spectroscopie Raman. Une mĂ©thode utilisant un polymĂšre (PMMA) comme support mĂ©canique a Ă©tĂ© optimisĂ©e pour le transfert du graphĂšne vers diffĂ©rents substrats, tels du verre ou du silicium recouvert d’oxyde de silicium. La caractĂ©risation par microscopie optique et Ă©lectronique Ă  balayage et par spectroscopie Raman des Ă©chantillons transfĂ©rĂ©s dĂ©montre que le procĂ©dĂ© de transfert n’endommage pas le graphĂšne et laisse la surface exempte de rĂ©sidus apparents de contamination. Les mesures de cartographie Raman montrent une trĂšs faible intensitĂ© du pic associĂ© aux dĂ©fauts, preuve que la croissance produit du graphĂšne de haute qualitĂ©. Ce procĂ©dĂ© de transfert a Ă©tĂ© appliquĂ© pour rĂ©aliser des Ă©lectrodes transparentes comportant entre une Ă  quatre couches de graphĂšne empilĂ©es. Ces Ă©lectrodes ont Ă©tĂ© caractĂ©risĂ©es par spectroscopie Raman, par des mesures en transmission optique et par des mesures de rĂ©sistance Ă©lectrique par la mĂ©thode de van der Pauw. Les rĂ©sultats de spectroscopie Raman montrent que le niveau de dopage des Ă©chantillons diminue lorsqu’on augmente le nombre de couches de graphĂšne. Les mesures optiques montrent une transparence variant entre 97,5 et 90%pour une longueur d’onde entre 400 et 1000 nm en fonction du nombre de couches empilĂ©es. La rĂ©sistance de feuille des Ă©lectrodes varie entre 560 et 360, une performance Ă©quivalente, voire supĂ©rieure Ă  celle des Ă©lectrodes de graphĂšne prĂ©sentĂ©es dans la littĂ©rature. Une mĂ©thode Ă©lectrochimique est utilisĂ©e pour doper les Ă©chantillons Ă  des niveaux trĂšs Ă©levĂ©s,diminuant la rĂ©sistance de feuille jusqu’à 260 pour une Ă©lectrode de graphĂšne monocouche. Ce dopage permet de varier le travail de sortie du graphĂšne entre 3,9 et 5,6 eV. L’ensemble de ces rĂ©sultats dĂ©montre que le graphĂšne est un matĂ©riau idĂ©al pour ĂȘtre utilisĂ© comme Ă©lectrode transparente, Ă©tant donnĂ© ses excellentes propriĂ©tĂ©s optiques et Ă©lectriques ainsi que la possibilitĂ© de modifier simplement son travail de sortie, permettant de minimiser la rĂ©sistance de contact avec divers matĂ©riaux semiconducteurs.---------- Abstract This master’s thesis focuses on the characterization and optimization of transparent and conductive electrodes made from graphene layers. We used a low pressure CVD method, with methane as the carbon source and copper as a catalyst and growth support, to synthesize graphene. Scanning electron microscopy and Raman spectroscopy were used to demonstrate that the graphene layers are complete and uniform. A method using a polymer (PMMA) as a mechanical support has been optimized for the transfer of graphene films onto various substrates, such as glass or silicon dioxide on silicon. Characterization of transferred samples by optical and scanning electron microscopy and Raman spectroscopy reveals that transferred films are undamaged and that the surface is free of visible residues. The intensity of the defect-related peak in Raman mapping measurements is low, indicating that the as-grown and transferred graphene layers are of high quality. This transfer process has been applied to fabricate transparent electrodes with one to four layers of graphene. The electrodes were characterized by Raman spectroscopy, optical transmission analyses and electrical resistance measurements using the van der Pauw method. Raman results indicate that the average doping level of the samples decreases with an increasing number of graphene layers. The optical measurements yield transparency values ranging from 97.5 to 90 % for wavelengths between 400 and 1000 nm, depending on the number of stacked layers. The sheet resistance of the electrodes varies between 560 and 360, which is an equivalent or superior performance to that of graphene electrodes reported in the literature. An electrochemical method was used to dope the samples in an ionic liquid to vary the Fermi level and to decrease the sheet resistance down to 260for a monolayer graphene electrode. This doping allows to vary the work function of graphene between 3.9 and 5.6 eV. Taken together, these results demonstrate that graphene appears as an ideal material to be used as transparent electrode given its excellent optical and electrical properties as well as the ability to easily modify its work function and thus minimize the contact resistance with various semiconductor materials

    Trajectoires et visées de l'hydrogéomorphologie au Québec

    Get PDF
    L'hydrogĂ©omorphologie Ă©tudie la dynamique des riviĂšres en se concentrant sur lesinteractions liant la structure des Ă©coulements, la mobilisation et le transport dessĂ©diments et les morphologies qui caractĂ©risent les cours d'eau et leur bassin‐versant. Elleoffre un cadre d'analyse et des outils pour une meilleure intĂ©gration des connaissancessur la dynamique des riviĂšres pour la gestion des cours d'eau au sens large, et plusspĂ©cifiquement, pour leur restauration, leur amĂ©nagement et pour l'Ă©valuation et laprĂ©vention des risques liĂ©s aux alĂ©as fluviaux. Au QuĂ©bec, l'hydrogĂ©omorphologie Ă©mergecomme contribution significative dans les approches de gestion et d'Ă©valuation du risqueet se trouve au cƓur d'un changement de paradigme dans la gestion des cours d'eau parlequel la restauration des processus vise Ă  augmenter la rĂ©silience des systĂšmes et dessociĂ©tĂ©s et Ă  amĂ©liorer la qualitĂ© des environnements fluviaux. Cette contribution exposela trajectoire de l'hydrogĂ©omorphologie au QuĂ©bec Ă  partir des publications scientifiquesde gĂ©ographes du QuĂ©bec et discute des visĂ©es de la discipline en recherche et enintĂ©gration des connaissances pour la gestion des cours d'eau. Hydrogeomorphology studies river dynamics, focusing on the interactions between flowstructure, sediment transport, and the morphologies that characterize rivers and theirwatersheds. It provides an analytical framework and tools for better integratingknowledge of river dynamics into river management in the broadest sense, and morespecifically, into river restoration as well as into the assessment and prevention of risksassociated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as asignificant contribution to risk assessment and management approaches, and is at theheart of a paradigm shift in river management whereby process restoration aims toincrease the resilience of fluvial systems and societies, and improve the quality of fluvialenvironments. This contribution outlines the trajectory of hydrogeomorphology inQuebec, based on scientific publications by Quebec geographers, and discusses thediscipline's aims in research and knowledge integration for river management

    Can the Morphological Quality Index (MQI) be used to determine the ecological status of lowland rivers?

    No full text
    Stream assessment indices have become increasingly important in quantifying the overall status of river networks to define specific targets for restoration initiatives. Such an assessment is particularly needed in degraded environments, such as agricultural streams. Some of these evaluation tools, for instance the Qualitative Habitat Evaluation Index (QHEI), are resource intensive because they are field based. Indices that are less dependent on detailed field observations, such as the Morphological Quality Index (MQI), can provide a greater spatial coverage at a lower cost. The objectives of this study are to (1) verify whether a river's morphological quality, quantified using the MQI, can predict the fish habitat quality of a stream determined with the QHEI for eastern Canadian lowland streams, (2) compare the morphological quality, estimated solely from remotely sensed data (RMQI), to the standard MQI, (3) test whether a modified MQI (MMQI) is more appropriate than the original index for the eastern Canadian landscape when comparing with the QHEI fish habitat assessment, and (4) considering the near absence of dams in lowland eastern Canadian streams, compare an MQI where dam-related indicators are optional (MQI-OD) with the QHEI. The hydrogeomorphological and ecological conditions of 118 stream reaches, including 97 in agricultural areas, were assessed across Quebec and southern Ontario using the MQI and QHEI. Each stream was initially evaluated using remotely sensed data: 1-m LiDAR (Quebec) and 5-m DEMs (Ontario), historical aerial photography (1964–2010), and orthophotos. Field assessments were conducted to validate fish habitat and morphological data for both indices. A strong correlation was observed at the reach scale between the MQI and QHEI (r = 0.81) and MQI and RMQI (r = 0.95). Both modified MQI (MMQI and MQI-OD) showed stronger correlation than the standard MQI with the QHEI (r = 0.87), likely because the standard MQI slightly overestimates the current quality status at the habitat scale in the case of small agricultural catchments where main pressures are not always represented by artificial structures. However, because the standard MQI performs generally well in the study area, we suggest using it to ensure consistency and facilitate comparison with other regions. The results from this study demonstrate that the MQI can be used to provide an assessment of ecological (fish habitat) quality. In addition, our results indicate that a remote hydrogeomorphological assessment can be conducted to estimate the overall status of stream networks

    No graphene etching in purified hydrogen

    No full text

    Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities

    No full text
    The growth of high quality graphene layers by chemical vapor deposition (CVD) has been found to strongly depend on growth conditions with results varying greatly from one laboratory to another for nominally identical conditions. We report the results of a systematic investigation of the role of hydrogen and oxidizing impurities present in the gas feedstock during the growth and cooling stages in low-pressure CVD. First, we show that for a partial pressure of oxidizing impurities below 1 ppb, hydrogen is not required for graphene growth from methane. Second, we demonstrate that purified hydrogen does not etch graphene films at typical growth temperatures. Third, a flow of purified hydrogen during cooling counterbalances graphene etching by oxygen, thus protecting the films. Films grown under high purity conditions (low level of oxidizing impurities) exhibit a higher bilayer and multilayer coverage; Surprisingly some of these bi- and multilayer graphene islands are twisted with respect to the first graphene layer as revealed by hyperspectral Raman imaging. Overall, this growth behavior suggests a competitive action between film growth from the carbon precursors and etching by the oxidative species. Our results provide new fundamental insights on the graphene CVD growth, highlighting the important yet indirect role of hydrogen and its major influence on controlling the action of oxidizing impurities on nucleation and etching during the growth process
    corecore