12 research outputs found

    СOMPUTATIONAL COMPLEXITY ANALYSIS OF RECURRENT DATA PROCESSING ALGORITHMS IN OPTICAL COHERENCE TOMOGRAPHY

    No full text
    The paper deals with the basic principles of signals representation in optical coherence tomography with the usage of dynamic systems theory formalism. Computational complexity of algorithms for dynamic estimation of signals parameters is analyzed, such as extended Kalman filter and sequential Monte-Carlo method. It is shown that processing time of one discrete-time sample of the signal by extended Kalman filter increases polynomially with sizes of parameters vector and observation vector. Processing time of one discrete-time sample of the signal by sequential Monte-Carlo method depends linearly both on sizes of parameters vector and observation vector, and on the number of generating random vectors. Experimental results of processing time measurement by each algorithm are described. It is shown that processing time of the signal containing 500 discrete-time samples by extended Kalman filter in the case of the simplest model is approximately equal to 0.1 seconds and increases several times with complication of the model. Processing time of the same signal by sequential Monte-Carlo methods with fixed number of generated random vectors is equal to 0.7 seconds and slightly increases with complication of the model, approximately by 1.5 times. Obtained results may be used for estimation of expected data processing time by recurrent dynamic estimation algorithms in optical coherence tomography systems

    Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography

    No full text
    Abstract Among numerous approaches to the study of migraine, the nitroglycerin (NTG) model occupies a prominent place, but there is relatively insufficient information about how NTG affects intracranial vessels. In this study we aim to assess the effects of NTG on blood-flow parameters in meningeal vessels measured by imaging photoplethysmography (iPPG) in animal experiments. An amplitude of the pulsatile component (APC) of iPPG waveform was assessed before and within 2.5 h after the NTG administration in saline (n = 13) or sumatriptan (n = 12) pretreatment anesthetized rats in conditions of a closed cranial window. In animals of both groups, NTG caused a steady decrease in blood pressure. In 7 rats of the saline group, NTG resulted in progressive increase in APC, whereas decrease in APC was observed in other 6 rats. In all animals in the sumatriptan group, NTG administration was accompanied exclusively by an increase in APC. Diametrically opposite changes in APC due to NTG indicate a dual effect of this drug on meningeal vasomotor activity. Sumatriptan acts as a synergist of the NTG vasodilating action. The results we obtained contribute to understanding the interaction of vasoactive drugs in the study of the headache pathophysiology and methods of its therapy

    Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography

    No full text
    Abstract Background The non-invasive biomarkers of migraine can help to develop the personalized medication of this disorder. In testing of the antimigraine drugs the capsaicin-induced skin redness with activated TRPV1 receptors in sensory neurons associated with the release of the migraine mediator CGRP has already been widely used. Methods Fourteen migraine patients (mean age 34.6 ± 10.2 years) and 14 healthy volunteers (mean age 29.9 ± 9.7 years) participated in the experiment. A new arrangement of imaging photoplethysmography recently developed by us was used here to discover novel sensitive parameters of dermal blood flow during capsaicin applications in migraine patients. Results Blood pulsation amplitude (BPA) observed as optical-intensity waveform varying synchronously with heartbeat was used for detailed exploration of microcirculatory perfusion induced by capsicum patch application. The BPA signals, once having appeared after certain latent period, were progressively rising until being saturated. Capsaicin-induced high BPA areas were distributed unevenly under the patch, forming “hot spots.” Interestingly the hot spots were much more variable in migraine patients than in the control group. In contrast to BPA, a slow component of waveforms related to the skin redness changed significantly less than BPA highlighting the latter parameter as the potential sensitive biomarker of capsaicin-induced activation of the blood flow. Thus, in migraine patients, there is a non-uniform (both in space and in time) reaction to capsaicin, resulting in highly variable openings of skin capillaries. Conclusion BPA dynamics measured by imaging photoplethysmography could serve as a novel sensitive non-invasive biomarker of migraine-associated changes in microcirculation

    Novel Method to Assess Endothelial Function via Monitoring of Perfusion Response to Local Heating by Imaging Photoplethysmography

    No full text
    Endothelial dysfunction is one of the most important markers of the risk of cardiovascular complications. This study is aimed to demonstrate the feasibility of imaging photoplethysmography to assess microcirculation response to local heating in order to develop a novel technology for assessing endothelial function. As a measure of vasodilation, we used the relative dynamics of the pulsatile component of the photoplethysmographic waveform, which was assessed in a large area of the outer surface of the middle third of the subject’s forearm. The perfusion response was evaluated in six healthy volunteers during a test with local skin heating up to 40–42 °C and subsequent relaxation. The proposed method is featured by accurate control of the parameters affecting the microcirculation during the prolonged study. It was found that in response to local hyperthermia, a multiple increase in the pulsation component, which has a biphasic character, was observed. The amplitude of the first phase of the perfusion reaction depends on both the initial skin temperature and the difference between the basal and heating temperatures. The proposed method allows the assessment of a reproducible perfusion increase in response to hyperthermia developed due to humoral factors associated with the endothelium, thus allowing detection of its dysfunction

    BILMIX : a new approach to restore the size polydispersity and electron density profiles of lipid bilayers from liposomes using small-angle X-ray scattering data

    No full text
    Small-angle X-ray scattering (SAXS) is one of the major tools for the study of model membranes, but interpretation of the scattering data remains non-trivial. Current approaches allow the extraction of some structural parameters and the electron density profile of lipid bilayers. Here it is demonstrated that parametric modelling can be employed to determine the polydispersity of spherical or ellipsoidal vesicles and describe the electron density profile across the lipid bilayer. This approach is implemented in the computer program BILMIX. BILMIX delivers a description of the electron density of a lipid bilayer from SAXS data and simultaneously generates the corresponding size distribution of the unilamellar lipid vesicles

    Quasi-Atomistic Approach to Modeling of Liposomes

    No full text
    Small-angle X-ray scattering is an important structural tool for studying biological membranes; however, interpretation of scattering data remains a challenging problem. In most cases, analysis makes it possible to determine some structural parameters and the electron density profile of lipid bilayers, but no methods providing more detailed information (e.g., about the structural organization of vesicles) have been proposed yet. An approach making it possible to determine the main integral characteristics of liposomes using small-angle scattering is presented in this study. Within this approach a quasi-atomic model of liposome is built from individual lipid molecules, which form a sphere or a hollow ellipsoid. The method has been implemented in a computer program, verified on experimental small-angle X-ray scattering data, and proposed to analyze the structure of lipid vesicles and their interactions with proteins

    Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin

    No full text
    <p>Cobra cytotoxins (CTs) belong to the three-fingered protein family. They are classified into S- and P-types, the latter exhibiting higher membrane-perturbing capacity. In this work, we investigated the interaction of CTs with phospholipid bilayers, using coarse-grained (CG) and full-atom (FA) molecular dynamics (MD). The object of this work is a CT of an S-type, cytotoxin I (CT1) from <i>N.oxiana</i> venom. Its spatial structure in aqueous solution and in the micelles of dodecylphosphocholine (DPC) were determined by <sup>1</sup>H-NMR spectroscopy. Then, via CG- and FA MD-computations, we evaluated partitioning of CT1 molecule into palmitoyloleoylphosphatidylcholine (POPC) membrane, using the toxin spatial models, obtained either in aqueous solution, or detergent micelle. The latter model exhibits minimal structural changes upon partitioning into the membrane, while the former deviates from the starting conformation, loosing the tightly bound water molecule in the loop-2. These data show that the structural changes elicited by CT1 molecule upon incorporation into DPC micelle take place likely in the lipid membrane, although the mode of the interaction of this toxin with DPC micelle (with the tips of the all three loops) is different from its mode in POPC membrane (primarily with the tip of the loop-1 and both the tips of the loop-1 and loop-2).</p
    corecore