28 research outputs found

    A 3D Model of Human Buccal Mucosa for Compatibility Testing of Mouth Rinsing Solutions

    No full text
    Oral mucositis is the most common and severe non-hematological complication associated with cancer radiotherapy, chemotherapy, or their combination. Treatment of oral mucositis focuses on pain management and the use of natural anti-inflammatory, sometimes weakly antiseptic mouth rinses in combination with optimal oral cavity hygiene. To prevent negative effects of rinsing, accurate testing of oral care products is necessary. Due to their ability to mimic realistic in-vivo conditions, 3D models may be an appropriate option in compatibility testing of anti-inflammatory and antiseptically effective mouth rinses. We present a 3D model of oral mucosa based on the cell line TR-146 with a physical barrier, characterized by high transepithelial electrical resistance (TEER) and confirmed cell integrity. Histological characterization of the 3D mucosa model showed a stratified, non-keratinized multilayer of epithelial cells similar to that of human oral mucosa. By means of immuno-staining, tissue-specific expression of cytokeratin 13 and 14 was shown. Incubation of the 3D mucosa model with the rinses had no effects on cell viability, but TEER decreased 24h after incubation in all solutions except ProntOral®. Analogous to skin models, the established 3D model meets the quality control criteria of OECD guidelines and may therefore be suitable for comparing the cytocompatibility of oral rinses

    Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice.

    No full text
    Long-term survival of high-risk neuroblastoma (NB) patients still remains under 50%. Here, we report the generation, in vitro characterization and anti-tumor effectivity of a new bicistronic xenogenic DNA vaccine encoding tyrosine hydroxylase (TH) that is highly expressed in NB tumors, and the immune stimulating cytokine interleukin 15 (IL-15) that induces cytotoxic but not regulatory T cells. The DNA sequences of TH linked to ubiquitin and of IL-15 were integrated into the bicistronic expression vector pIRES. Successful production and bioactivity of the vaccine-derived IL-15- and TH protein were shown by ELISA, bioactivity assay and western blot analysis. Further, DNA vaccine-driven gene transfer to the antigen presenting cells of Peyer's patches using attenuated Salmonella typhimurium that served as oral delivery system was shown by immunofluorescence analysis. The anti-tumor effect of the generated vaccine was evaluated in a syngeneic mouse model (A/J mice, n = 12) after immunization with S. typhimurium (3× prior and 3× after tumor implantation). Importantly, TH-/IL-15-based DNA vaccination resulted in an enhanced tumor remission in 45.5% of mice compared to controls (TH (16.7%), IL-15 (0%)) and reduced spontaneous metastasis (30.0%) compared to controls (TH (63.6%), IL-15 (70.0%)). Interestingly, similar levels of tumor infiltrating CD8+ T cells were observed among all experimental groups. Finally, co-expression of IL-15 did not result in elevated regulatory T cell levels in tumor environment measured by flow cytometry. In conclusion, co-expression of the stimulatory cytokine IL-15 enhanced the NB-specific anti-tumor effectivity of a TH-directed vaccination in mice and may provide a novel immunological approach for NB patients

    The Immunocytokine FAP-IL-2v Enhances Anti-Neuroblastoma Efficacy of the Anti-GD2 Antibody Dinutuximab Beta

    No full text
    Treatment of high-risk neuroblastoma (NB) patients with the anti-GD2 antibody (Ab) dinutuximab beta (DB) improves survival by 15%. Ab-dependent cellular cytotoxicity (ADCC) is the major mechanism of action and is primarily mediated by NK cells. Since IL-2 co-treatment did not show a therapeutic benefit but strongly induced Treg, we investigated here a DB-based immunotherapy combined with the immunocytokine FAP-IL-2v, which comprises a fibroblast activation protein α (FAP)-specific Ab linked to a mutated IL-2 variant (IL-2v) with abolished binding to the high-affinity IL-2 receptor, thus stimulating NK cells without induction of Treg. Effects of FAP-IL-2v on NK cells, Treg and ADCC mediated by DB, as well as FAP expression in NB, were investigated by flow cytometry, calcein-AM-based cytotoxicity assay and RT-PCR analysis. Moreover, the impact of soluble factors released from tumor cells on FAP expression by primary fibroblasts was assessed. Finally, a combined immunotherapy with DB and FAP-IL-2v was evaluated using a resistant syngeneic murine NB model. Incubation of leukocytes with FAP-IL-2v enhanced DB-specific ADCC without induction of Treg. FAP expression on NB cells and myeloid-derived suppressor cells (MDCS) in tumor tissue was identified. A tumor-cell-dependent enhancement in FAP expression by primary fibroblasts was demonstrated. Combination with DB and FAP-IL-2v resulted in reduced tumor growth and improved survival. Analysis of tumor tissue revealed increased NK and cytotoxic T cell numbers and reduced Treg compared to controls. Our data show that FAP-IL-2v is a potent immunocytokine that augments the efficacy of DB against NB, providing a promising alternative to IL-2

    Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    No full text
    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

    Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models

    No full text
    Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy

    Impact of IL-2 on Treatment Tolerance in Patients With High-Risk Neuroblastoma Treated With Dinutuximab Beta-Based Immunotherapy

    No full text
    Patients with high-risk neuroblastoma treated with continuous long-term infusion of anti-GD2 antibody dinutuximab beta (DB) in combination with IL-2 show an acceptable safety profile. Here, we compared treatment tolerance with and without IL-2. Ninety-nine patients with high-risk neuroblastoma received up to five cycles of DB given as long-term infusion (10 mg/m2/d, 100 mg/m2; per cycle) with IL-2 (53 patients; regimen A; 6 × 106 IU/m2/d; 60 × 106 IU/m2/cycle) and without IL-2 (46 patients; regimen B) in a single-center compassionate use program. Clinical parameters (body temperature, vital signs, Lansky performance score), laboratory values [C-reactive protein, IFN-γ, IL-6, and IL-18 (cycle 1)], and requirement of i.v. co-medication (e.g., morphine, metamizole) were systematically assessed. Patients with stable clinical parameters and that did not require co-medication were defined as potential “outpatient candidates.” Patients showed higher levels of body temperature and CRP in regimen A compared to B. However, IL-6 serum concentrations were similar in pts of both cohorts in the first cycle. Patients receiving regimen B showed a shorter time to achieve normal vital parameters and required less co-medication compared to patients in regimen A that resulted in a shorter median time period to discharge and to achieve a potential outpatient status (6d regimen A and 3–5d regimen B after start of antibody infusion, respectively). This study shows that omitting IL-2 from immunotherapy with DB allows reduced co-medication and hospitalization time and therefore results in improved quality of life in patients with high-risk neuroblastoma

    Immune Response and Outcome of High-Risk Neuroblastoma Patients Immunized with Anti-Idiotypic Antibody Ganglidiomab: Results from Compassionate-Use Treatments

    No full text
    (1) Background: High-risk neuroblastoma (HR-NB) is associated with a poor prognosis despite a multimodal high-intensity treatment regimen, including immunotherapy with anti-GD2 monoclonal antibodies (mAb). Here, we investigated the effects of an anti-idiotypic vaccine based on the mAb ganglidiomab that structurally mimics GD2. (2) Methods: Patients with HR-NB treated with anti-GD2 mAb dinutuximab beta and who achieved complete remission after frontline or salvage therapy were offered the vaccine (0.5 mg ganglidiomab adsorbed to Alhydrogel®). Side effects (CTCAE v4.03) and immune responses were determined on each visit. We also evaluated the time to relapse or progression until the last follow-up. (3) Results: Seven HR-NB patients (five frontlines, two relapsed) received 6–22 subcutaneous injections every two weeks. Six of the seven patients showed an immune response. The non-responding patient had a haploidentical stem cell transplantation as part of the previous treatment. No fever, pain, neuropathy, or toxicities ≥ grade 3 occurred during or post-treatment. All immunized patients did not experience relapses or progressions of their neuroblastoma. (4) Conclusions: This is the first-in-man use of the ganglidiomab vaccine, which was well-tolerated, and all patients not pre-treated by haploidentical transplantation developed vaccine-specific immune responses. These findings provide an important basis for the design of prospective clinical trials

    Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models

    No full text
    Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy
    corecore