2,520 research outputs found
A Numerical Study of the Effects of Wave-Induced Fluid Flow in Porous Media: Linear Solver
In this paper, we present a computational method to simulate wave propagation in porous rocks saturated
with Newtonian fluids over a range of frequencies of interest. The method can use a digital representation
of a rock sample where distinct material phase and properties at each volume cell are identified and model
the dynamic response of the rock to an acoustic excitation mathematically with a coupled equation system:
elastic wave equation in solid matrix and viscous wave equation in fluid. The coupled wave equations are
solved numerically with a rotated-staggered-grid finite difference scheme. We simulate P-wave
propagation through an idealized porous medium of periodically alternating solid and fluid layers where an
analytical solution is available and obtain excellent agreements between numerical and analytical solutions.
The method models the effect of pore fluid motion on the rock dynamic response more accurately with a
linearized Navier-Stokes equation than with the viscoelastic model of the generalized Maxwell body, a low
frequency approximation commonly used to overcome the difficulty of modeling frequency-dependent
fluid shear modulus in time domain.Schlumberger Doll ResearchMassachusetts Institute of Technology. Earth Resources Laborator
Measurement report:Dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi'an during severe haze events
To mitigate haze pollution in China, a better understanding of the sources of carbonaceous aerosols is required due to the complexity in multiple emissions and atmospheric processes. Here we combined the analysis of radiocarbon and the stable isotope 13C to investigate the sources and formation of carbonaceous aerosols collected in two Chinese megacities (Beijing and Xi'an) during severe haze events of a "red alarm"level from December 2016 to January 2017. The haze periods with daily PM2:5 concentrations as high as ∼400 μgm-3 were compared to subsequent clean periods (i.e., PM2:5 less than median concentrations during the winter 2016/2017) with PM2:5 concentrations below 100 μgm-3 in Xi'an and below 20 μgm-3 in Beijing. In Xi'an, liquid fossil fuel combustion was the dominant source of elemental carbon (EC; 44 %-57 %), followed by biomass burning (25 %-29 %) and coal combustion (17 %-29 %). In Beijing, coal combustion contributed 45 %-61% of EC, and biomass burning (17 %-24 %) and liquid fossil fuel combustion (22 %-33 %) contributed less. Non-fossil sources contributed 51 %-56% of organic carbon (OC) in Xi'an, and fossil sources contributed 63 %-69% of OC in Beijing. Secondary OC (SOC) was largely contributed by non-fossil sources in Xi'an (56∼6 %) and by fossil sources in Beijing (75∼10 %), especially during haze periods. The fossil vs. non-fossil contributions to OC and EC did not change drastically during haze events in both Xi'an and Beijing. However, compared to clean periods, the contribution of coal combustion to EC during haze periods increased in Xi'an and decreased in Beijing. During clean periods, primary OC from biomass burning and fossil sources constituted ∼70% of OC in Xi'an and ∼53% of OC in Beijing. From clean to haze periods, the contribution of SOC to total OC increased in Xi'an but decreased in Beijing, suggesting that the contribution of secondary organic aerosol formation to increased OC during haze periods was more efficient in Xi'an than in Beijing. In Beijing, the high SOC fraction in total OC during clean periods was mainly due to an elevated contribution from non-fossil SOC. In Xi'an, a slight day-night difference was observed during the clean period with enhanced fossil contributions to OC and EC during the day. This day-night difference was negligible during severe haze periods, likely due to the enhanced accumulation of pollutants under stagnant weather conditions
Gattini 2010: Cutting Edge Science at the Bottom of the World
The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical
Observatories. The Gattini project was created to measure the optical
sky brightness, large area cloud cover and aurora of the winter-time
sky above such high altitude Antarctic sites. The Gattini-DomeA camera
was installed on the PLATO instrument module as part of the Chinese-led
traverse to the highest point on the Antarctic plateau in January 2008.
This single automated wide field camera contains a suite of Bessel
photometric filters (B, V, R) and a long-pass red filter for the
detection and monitoring of OH emission. We have in hand one complete
winter-time dataset (2009) from the camera that was recently returned
in April 2010.
The Gattini-South Pole UV camera is a wide-field optical camera that in
2011 will measure for the first time the UV properties of the
winter-time sky above the South Pole dark sector. This unique dataset
will consist of frequent images taken in both broadband U and B filters
in addition to high resolution (R similar to 5000) long slit
spectroscopy over a narrow bandwidth of the central field. The camera
is a proof of concept for the 2m-class Antarctic Cosmic Web Imager
telescope, a dedicated experiment to directly detect and map the
redshifted lyman alpha fluorescence or Cosmic Web emission we believe
possible due to the unique geographical qualities of the site.
We present the current status of both projects
Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine
Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response
Symmetry and topology in antiferromagnetic spintronics
Antiferromagnetic spintronics focuses on investigating and using
antiferromagnets as active elements in spintronics structures. Last decade
advances in relativistic spintronics led to the discovery of the staggered,
current-induced field in antiferromagnets. The corresponding N\'{e}el
spin-orbit torque allowed for efficient electrical switching of
antiferromagnetic moments and, in combination with electrical readout, for the
demonstration of experimental antiferromagnetic memory devices. In parallel,
the anomalous Hall effect was predicted and subsequently observed in
antiferromagnets. A new field of spintronics based on antiferromagnets has
emerged. We will focus here on the introduction into the most significant
discoveries which shaped the field together with a more recent spin-off
focusing on combining antiferromagnetic spintronics with topological effects,
such as antiferromagnetic topological semimetals and insulators, and the
interplay of antiferromagnetism, topology, and superconductivity in
heterostructures.Comment: Book chapte
Examining putamen resting-state connectivity markers of suicide attempt history in depressed adolescents
IntroductionSuicide is a current leading cause of death in adolescents and young adults. The neurobiological underpinnings of suicide risk in youth, however, remain unclear and a brain-based model is lacking. In adult samples, current models highlight deficient serotonin release as a potential suicide biomarker, and in particular, involvement of serotonergic dysfunction in relation to the putamen and suicidal behavior. Less is known about associations among striatal regions and relative suicidal risk across development. The current study examined putamen connectivity in depressed adolescents with (AT) and without history of a suicide attempt (NAT), specifically using resting-state functional magnetic resonance imaging (fMRI) to evaluate patterns in resting-state functional connectivity (RSFC). We hypothesized the AT group would exhibit lower striatal RSFC compared to the NAT group, and lower striatal RSFC would associate with greater suicidal ideation severity and/or lethality of attempt.MethodsWe examined whole-brain RSFC of six putamen regions in 17 adolescents with depression and NAT (MAge [SD] = 16.4[0.3], 41% male) and 13 with AT (MAge [SD] = 16.2[0.3], 31% male).ResultsOnly the dorsal rostral striatum showed a statistically significant bilateral between-group difference in RSFC with the superior frontal gyrus and supplementary motor area, with higher RSFC in the group without a suicide attempt compared to those with attempt history (voxel-wise p<.001, cluster-wise p<.01). No significant associations were found between any putamen RSFC patterns and suicidal ideation severity or lethality of attempts among those who had attempted.DiscussionThe results align with recent adult literature and have interesting theoretical and clinical implications. A possible interpretation of the results is a mismatch of the serotonin transport to putamen and to the supplementary motor area and the resulting reduced functional connectivity between the two areas in adolescents with attempt history. The obtained results can be used to enhance the diathesis-stress model and the Emotional paiN and social Disconnect (END) model of adolescent suicidality by adding the putamen. We also speculate that connectivity between putamen and the supplementary motor area may in the future be used as a valuable biomarker of treatment efficacy and possibly prediction of treatment outcome
Structure of a Protozoan Virus from the Human Genitourinary Parasite Trichomonas vaginalis
The flagellated protozoan Trichomonas vaginalis is an obligate human genitourinary parasite and the most frequent cause of sexually transmitted disease worldwide. Most clinical isolates of T. vaginalis are persistently infected with one or more double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae, which appear to influence not only protozoan biology but also human disease. Here we describe the three-dimensional structure of Trichomonas vaginalis virus 1 (TVV1) virions, as determined by electron cryomicroscopy and icosahedral image reconstruction. The structure reveals a T = 1 capsid comprising 120 subunits, 60 in each of two nonequivalent positions, designated A and B, as previously observed for fungal Totiviridae family members. The putative protomer is identified as an asymmetric AB dimer consistent with either decamer or tetramer assembly intermediates. The capsid surface is notable for raised plateaus around the icosahedral 5-fold axes, with canyons connecting the 2- and 3-fold axes. Capsid-spanning channels at the 5-fold axes are unusually wide and may facilitate release of the viral genome, promoting dsRNA-dependent immunoinflammatory responses, as recently shown upon the exposure of human cervicovaginal epithelial cells to either TVV-infected T. vaginalis or purified TVV1 virions. Despite extensive sequence divergence, conservative features of the capsid reveal a helix-rich fold probably derived from an ancestor shared with fungal Totiviridae family members. Also notable are mass spectrometry results assessing the virion proteins as a complement to structure determination, which suggest that translation of the TVV1 RNA-dependent RNA polymerase in fusion with its capsid protein involves −2, and not +1, ribosomal frameshifting, an uncommonly found mechanism to date
Mapping our Universe in 3D with MITEoR
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral
hydrogen has the potential to overtake the cosmic microwave background as our
most powerful cosmological probe, because it can map a much larger volume of
our Universe, shedding new light on the epoch of reionization, inflation, dark
matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that
greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR
accomplishes this by using massive baseline redundancy both to enable automated
precision calibration and to cut the correlator cost scaling from N^2 to NlogN,
where N is the number of antennas. The success of MITEoR with its 64
dual-polarization elements bodes well for the more ambitious HERA project,
which would incorporate many identical or similar technologies using an order
of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium
on Phased Array Systems & Technolog
- …