41 research outputs found

    Virologic Failures on Initial Boosted-PI Regimen Infrequently Possess Low-Level Variants with Major PI Resistance Mutations by Ultra-Deep Sequencing

    Get PDF
    It is unknown whether HIV-positive patients experiencing virologic failure (VF) on boosted-PI (PI/r) regimens without drug resistant mutations (DRM) by standard genotyping harbor low-level PI resistant variants. CASTLE compared the efficacy of atazanavir/ritonavir (ATV/r) with lopinavir/ritonavir (LPV/r), each in combination with TVD in ARV-naïve subjects.To determine if VF on an initial PI/r-based regimen possess low-level resistant variants that may affect a subsequent PI-containing regimen.Patients experiencing VF on a Tenofovir/Emtricitabine+PI/r regimen were evaluated by ultra deep sequencing (UDS) for mutations classified/weighted by Stanford HIVdb. Samples were evaluated for variants to 0.4% levels. 36 VF subjects were evaluated by UDS; 24 had UDS for PI and RT DRMs. Of these 24, 19 (79.2%) had any DRM by UDS. The most common UDS-detected DRM were NRTI in 18 subjects: M184V/I (11), TAMs(7) & K65R(4); PI DRMs were detected in 9 subjects: M46I/V(5), F53L(2), I50V(1), D30N(1), and N88S(1). The remaining 12 subjects, all with VLs<10,000, had protease gene UDS, and 4 had low-level PI DRMs: F53L(2), L76V(1), I54S(1), G73S(1). Overall, 3/36(8.3%) subjects had DRMs identified with Stanford-HIVdb weights >12 for ATV or LPV: N88S (at 0.43% level-mutational load 1,828) in 1 subject on ATV; I50V (0.44%-mutational load 110) and L76V (0.52%-mutational load 20) in 1 subject each, both on LPV. All VF samples remained phenotypically susceptible to the treatment PI/r.Among persons experiencing VF without PI DRMs with standard genotyping on an initial PI/r regimen, low-level variants possessing major PI DRMs were present in a minority of cases, occurred in isolation, and did not result in phenotypic resistance. NRTI DRMs were detected in a high proportion of subjects. These data suggest that PIs may remain effective in subjects experiencing VF on a PI/r-based regimen when PI DRMs are not detected by standard or UDS genotyping

    A Phase 2b randomised, controlled, partially blinded trial of the HIV Nucleoside Reverse Transcriptase Inhibitor BMS-986001 (AI467003): Weeks 24 and 48 Efficacy, Safety, Bone and Metabolic Results

    Get PDF
    Background BMS-986001 is a thymidine analogue nucleoside reverse transcriptase inhibitor (NRTI) designed to maintain in-vitro antiviral activity while minimising off-target effects. We assessed the efficacy and safety of BMS-986001 versus tenofovir disoproxil fumarate in treatment-naive patients with HIV-1. Methods In this phase 2b, randomised, active-controlled trial (AI467003), we recruited treatment-naive (no current or previous exposure to an antiretroviral drug for >1 week) adults (aged at least 18 years) with HIV-1 from 47 sites across Asia, Australia, Europe, North America, South Africa, and South America. Patients with plasma HIV-1 RNA greater than 5000 copies per mL and CD4 counts greater than 200 cells per μL were randomly assigned (2:2:2:3) to receive BMS-986001 100 mg, 200 mg, or 400 mg once a day or to receive tenofovir disoproxil fumarate 300 mg once a day; each allocation was given with efavirenz 600 mg once a day and lamivudine 300 mg once a day. Both patients and investigators were masked to BMS-986001 dose (achieved with similar looking placebo tablets), but not allocation up to and including week 48. The primary endpoints were the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL and safety events (serious adverse events and adverse events leading to discontinuation) through week 24; the main analysis was with a modified intention-to-treat population. Resistance analysis was a secondary endpoint, and additional safety parameters were exploratory endpoints. This trial is registered with ClinicalTrials.gov, number NCT01489046, and the European Clinical Trials Database, number EudraCT 2011-003329-89. Findings Patients were recruited between Jan 25, 2012, and Oct 3, 2012; 757 patients were assessed for eligibility and 301 were randomly assigned to receive either BMS-986001 once a day (67 patients to 100 mg, 67 to 200 mg, and 66 to 400 mg) or tenofovir disoproxil fumarate (n=101). 297 patients received at least one dose of study drug. At week 24, 57 (88%) of 65 patients for whom there were data in the 100 mg group, 54 (81%) of 67 in the 200 mg group, 62 (94%) of 66 in the 400 mg group achieved HIV-1 RNA less than 50 copies per mL, compared with 88 (89%) of 99 in the tenofovir disoproxil fumarate group (modified intention-to-treat population). BMS-986001 was generally well tolerated through week 48. Two patients had BMS-986001-related serious adverse events (atypical drug eruption and thrombocytopenia) and two in the tenofovir disoproxil fumarate group had study drug-related serious adverse events (potential drug-induced liver injury and depression or lipodystrophy) that led to discontinuation. NRTI resistance-associated mutations were reported in four (2%) of 198 patients, and non-NRTI mutations in 17 (9%) of 198 patients receiving BMS-986001 versus none of 99 and one (1%) of 99 patients receiving tenofovir disoproxil fumarate, respectively. Compared with tenofovir disoproxil fumarate, individuals in the BMS-986001 groups showed a smaller decrease in lumbar spine and hip bone mineral density but greater accumulation of limb and trunk fat, subcutaneous and visceral adipose tissue, and increased total cholesterol. Interpretation BMS-986001 had similar efficacy to that of tenofovir disoproxil fumarate and was associated with a smaller decrease in bone mineral density; however, greater resistance and gains in both peripheral and central fat accumulation were recorded for the investigational drug. Bristol-Myers Squibb has discontinued its involvement in the development of BMS-986001, and future decisions on development will be made by Oncolys BioPharma

    Prevalence and Clinical Significance of HIV Drug Resistance Mutations by Ultra-Deep Sequencing in Antiretroviral-Naïve Subjects in the CASTLE Study

    Get PDF
    CASTLE compared the efficacy of atazanavir/ritonavir with lopinavir/ritonavir, each in combination with tenofovir-emtricitabine in ARV-naïve subjects from 5 continents.Determine the baseline rate and clinical significance of TDR mutations using ultra-deep sequencing (UDS) in ARV-naïve subjects in CASTLE.A case control study was performed on baseline samples for all 53 subjects with virologic failures (VF) at Week 48 and 95 subjects with virologic successes (VS) randomly selected and matched by CD4 count and viral load. UDS was performed using 454 Life Sciences/Roche technology.Of 148 samples, 141 had successful UDS (86 subtype B, 55 non-B subtypes). Overall, 30.5% of subjects had a TDR mutation at baseline; 15.6% only had TDR(s) at <20% of the viral population. There was no difference in the rate of TDRs by B (30.2%) or non-B subtypes (30.9%). VF (51) and VS (90) had similar rates of any TDRs (25.5% vs. 33.3%), NNRTI TDRs (11.1% vs.11.8%) and NRTI TDRs (24.4% vs. 25.5%). Of 9 (6.4%) subjects with M184V/I (7 at <20% levels), 6 experienced VF. 16 (11.3%) subjects had multiple TAMs, and 7 experienced VF. 3 (2.1%) subjects had both multiple TAMs+M184V, and all experienced VF. Of 14 (9.9%) subjects with PI TDRs (11 at <20% levels): only 1 experienced virologic failure. The majority of PI TDRs were found in isolation (e.g. 46I) at <20% levels, and had low resistance algorithm scores.Among a representative sample of ARV-naïve subjects in CASTLE, TDR mutations were common (30.5%); B and non-B subtypes had similar rates of TDRs. Subjects with multiple PI TDRs were infrequent. Overall, TDRs did not affect virologic response for subjects on a boosted PI by week 48; however, a small subset of subjects with extensive NRTI backbone TDR patterns experienced virologic failure

    Long-term efficacy and safety of fostemsavir among subgroups of heavily treatment-experienced adults with HIV-1

    Get PDF
    Objectives: The aim of this study was to understand how demographic and treatment-related factors impact responses to fostemsavir-based regimens. Design: BRIGHTE is an ongoing phase 3 study evaluating twice-daily fostemsavir 600 mg and optimized background therapy (OBT) in heavily treatment-experienced individuals failing antiretroviral therapy with limited treatment options (Randomized Cohort 1-2 and Nonrandomized Cohort 0 fully active antiretroviral classes). Methods: Virologic response rates (HIV-1 RNA <40 copies/ml, Snapshot analysis) and CD4+ T-cell count increases in the Randomized Cohort were analysed by prespecified baseline characteristics (age, race, sex, region, HIV-1 RNA, CD4+ T-cell count) and viral susceptibility to OBT. Safety results were analysed by baseline characteristics for combined cohorts (post hoc). Results: In the Randomized Cohort, virologic response rates increased between Weeks 24 and 96 across most subgroups. Virologic response rates over time were most clearly associated with overall susceptibility scores for new OBT agents (OSS-new). CD4+ T-cell count increases were comparable across subgroups. Participants with baseline CD4+ T-cell counts less than 20 cells/μl had a mean increase of 240 cells/μl. In the safety population, more participants with baseline CD4+ T-cell counts less than 20 vs. at least 200 cells/μl had grade 3/4 adverse events [53/107 (50%) vs. 24/96 (25%)], serious adverse events [58/107 (54%) vs. 25/96 (26%)] and deaths [16/107 (15%) vs. 2/96 (2%)]. There were no safety differences by other subgroups. Conclusion: Week 96 results for BRIGHTE demonstrate comparable rates of virologic and immunologic response (Randomized Cohort) and safety (combined cohorts) across subgroups. OSS-new is an important consideration when constructing optimized antiretroviral regimens for heavily treatment-experienced individuals with limited remaining treatment options

    Low-Frequency NNRTI-Resistant HIV-1 Variants and Relationship to Mutational Load in Antiretroviral-Naïve Subjects

    No full text
    Low-frequency HIV variants possessing resistance mutations against non‑nucleoside reverse transcriptase inhibitors (NNRTI), especially at HIV reverse transcriptase (RT) amino acid (aa) positions K103 and Y181, have been shown to adversely affect treatment response. Therapeutic failure correlates with both the mutant viral variant frequency and the mutational load. We determined the prevalence of NNRTI resistance mutations at several RT aa positions in viruses from 204 antiretroviral (ARV)-naïve HIV-infected individuals using deep sequencing, and examined the relationship between mutant variant frequency and mutational load for those variants. Deep sequencing to ≥0.4% levels found variants with major NNRTI-resistance mutations having a Stanford-HIVdb algorithm value ≥30 for efavirenz and/or nevirapine in 52/204 (25.5%) ARV-naïve HIV-infected persons. Eighteen different major NNRTI mutations were identified at 11 different positions, with the majority of variants being at frequency &gt;1%. The frequency of these variants correlated strongly with the mutational load, but this correlation weakened at low frequencies. Deep sequencing detected additional major NNRTI-resistant viral variants in treatment-naïve HIV-infected individuals. Our study suggests the significance of screening for mutations at all RT aa positions (in addition to K103 and Y181) to estimate the true burden of pre-treatment NNRTI-resistance. An important finding was that variants at low frequency had a wide range of mutational loads (&gt;100-fold) suggesting that frequency alone may underestimate the impact of specific NNRTI-resistant variants. We recommend further evaluation of all low-frequency NNRTI-drug resistant variants with special attention given to the impact of mutational loads of these variants on treatment outcomes

    Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study.

    No full text
    GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants
    corecore