190 research outputs found

    Current Status of Graphene Transistors

    Full text link
    This paper reviews the current status of graphene transistors as potential supplement to silicon CMOS technology. A short overview of graphene manufacturing and metrology methods is followed by an introduction of macroscopic graphene field effect transistors (FETs). The absence of an energy band gap is shown to result in severe shortcomings for logic applications. Possibilities to engineer a band gap in graphene FETs including quantum confinement in graphene Nanoribbons (GNRs) and electrically or substrate induced asymmetry in double and multi layer graphene are discussed. Graphene FETs are shown to be of interest for analog radio frequency applications. Finally, novel switching mechanisms in graphene transistors are briefly introduced that could lead to future memory devices.Comment: 11 pages, 6 figure

    Extended papers selected from ESSDERC 2015

    Get PDF
    This special issue of Solid State Electronics includes 28 papers which have been carefully selected from the best presentations given at the 45th European Solid-State Device Research Conference (ESSDERC 2015) held from September 14–18, 2015 in Graz, Austria. These papers cover a wide range of topics related to the research on solid-state devices. These topics are used also to organize the conference submissions and presentations into 7 tracks: CMOS Processes, Devices and Integration; Opto-, Power- and Microwave Devices; Modeling & Simulation; Characterization, Reliability & Yield; Advanced & Emerging Memories; MEMS, Sensors & Display Technologies; Emerging Non-CMOS Devices & Technologies

    Direct Graphene Growth on Insulator

    Get PDF
    Fabrication of graphene devices is often hindered by incompatibility between the silicon technology and the methods of graphene growth. Exfoliation from graphite yields excellent films but is good mainly for research. Graphene grown on metal has a technological potential but requires mechanical transfer. Growth by SiC decomposition requires a temperature budget exceeding the technological limits. These issues could be circumvented by growing graphene directly on insulator, implying Van der Waals growth. During growth, the insulator acts as a support defining the growth plane. In the device, it insulates graphene from the Si substrate. We demonstrate planar growth of graphene on mica surface. This was achieved by molecular beam deposition above 600{\deg}C. High resolution Raman scans illustrate the effect of growth parameters and substrate topography on the film perfection. Ab initio calculations suggest a growth model. Data analysis highlights the competition between nucleation at surface steps and flat surface. As a proof of concept, we show the evidence of electric field effect in a transistor with a directly grown channel.Comment: 13 pages, 6 figure

    Growth-Induced Strain in Chemical Vapor Deposited Monolayer MoS2: Experimental and Theoretical Investigation

    Full text link
    Monolayer molybdenum disulphide (MoS2_2) is a promising two-dimensional (2D) material for nanoelectronic and optoelectronic applications. The large-area growth of MoS2_2 has been demonstrated using chemical vapor deposition (CVD) in a wide range of deposition temperatures from 600 {\deg}C to 1000 {\deg}C. However, a direct comparison of growth parameters and resulting material properties has not been made so far. Here, we present a systematic experimental and theoretical investigation of optical properties of monolayer MoS2_2 grown at different temperatures. Micro-Raman and photoluminescence (PL) studies reveal observable inhomogeneities in optical properties of the as-grown single crystalline grains of MoS2_2. Close examination of the Raman and PL features clearly indicate that growth-induced strain is the main source of distinct optical properties. We carry out density functional theory calculations to describe the interaction of growing MoS2_2 layers with the growth substrate as the origin of strain. Our work explains the variation of band gap energies of CVD-grown monolayer MoS2_2, extracted using PL spectroscopy, as a function of deposition temperature. The methodology has general applicability to model and predict the influence of growth conditions on strain in 2D materials.Comment: 37 pages, 6 figures, 10 figures in supporting informatio

    Non-invasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    Full text link
    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.Comment: 23 pages, 5 figure

    Ultra Low Specific Contact Resistivity in Metal-Graphene Junctions via Atomic Orbital Engineering

    Full text link
    A systematic investigation of graphene edge contacts is provided. Intentionally patterning monolayer graphene at the contact region creates well-defined edge contacts that lead to a 67% enhancement in current injection from a gold contact. Specific contact resistivity is reduced from 1372 {\Omega}m for a device with surface contacts to 456 {\Omega}m when contacts are patterned with holes. Electrostatic doping of the graphene further reduces contact resistivity from 519 {\Omega}m to 45 {\Omega}m, a substantial decrease of 91%. The experimental results are supported and understood via a multi-scale numerical model, based on density-functional-theory calculations and transport simulations. The data is analyzed with regards to the edge perimeter and hole-to-graphene ratio, which provides insights into optimized contact geometries. The current work thus indicates a reliable and reproducible approach for fabricating low resistance contacts in graphene devices. We provide a simple guideline for contact design that can be exploited to guide graphene and 2D material contact engineering.Comment: 26 page

    Maximum illumination control system for photovoltaic panels orientation

    Get PDF
    The article describes the solar tracker for photovoltaic panels and energy systems based on such devices. The authors introduce the results of calculations of the solar tracker application effectiveness for solar energy systems and the results of the field testing in Tomsk

    A Graphene-based Hot Electron Transistor

    Get PDF
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call Graphene Base Transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 50.000.Comment: 18 pages, 6 figure
    corecore