52 research outputs found

    Measurement and Calculation of Absolute Single and Multiple Charge Exchange Cross Sections for Fe^(q+) Ions Impacting H_2O

    Get PDF
    Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Fe^(q+) (q = 5-13) ions with H_2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe^(9+) ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H_2O up to H_2O^(10+)

    Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    Get PDF
    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given

    Equilibrium gas-phase structures of sodium fluoride, bromide, and iodide monomers and dimers

    Get PDF
    The alkali halides sodium fluoride, sodium bromide, and sodium iodide exist in the gas phase as both monomer and dimer species. A reanalysis of gas electron diffraction (GED) data collected earlier has been undertaken for each of these molecules using the EXPRESS method to yield experimental equilibrium structures. EXPRESS allows amplitudes of vibration to be estimated and correction terms to be applied to each pair of atoms in the refinement model. These quantities are calculated from the ab initio potential-energy surfaces corresponding to the vibrational modes of the monomer and dimer. Because they include many of the effects associated with large-amplitude modes of vibration and anharmonicity, we have been able to determine highly accurate experimental structures. These results are found to be in good agreement with those from high-level core-valence ab initio calculations and are substantially more precise than those obtained in previous structural studies

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    Charge Transfer Reactions

    Full text link

    Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    Full text link
    corecore