22 research outputs found

    On the Use of Quantum Chemistry for the Determination of Propagation, Copolymerization, and Secondary Reaction Kinetics in Free Radical Polymerization

    Get PDF
    Throughout the last 25 years, computational chemistry based on quantum mechanics has been applied to the investigation of reaction kinetics in free radical polymerization (FRP) with growing interest. Nowadays, quantum chemistry (QC) can be considered a powerful and cost-effective tool for the kinetic characterization of many individual reactions in FRP, especially those that cannot yet be fully analyzed through experiments. The recent focus on copolymers and systems where secondary reactions play a major role has emphasized this feature due to the increased complexity of these kinetic schemes. QC calculations are well-suited to support and guide the experimental investigation of FRP kinetics as well as to deepen the understanding of polymerization mechanisms. This paper is intended to provide an overview of the most relevant QC results obtained so far from the investigation of FRP. A comparison between computational results and experimental data is given, whenever possible, to emphasize the performances of the two approaches in the prediction of kinetic data. This work provides a comprehensive database of reaction rate parameters of FRP to assist in the development of advanced models of polymerization and experimental studies on the topic

    NMR Metabolomics for Stem Cell type discrimination

    Get PDF
    Cell metabolism is a key determinant factor for the pluripotency and fate commitment of Stem Cells (SCs) during development, ageing, pathological onset and progression. We derived and cultured selected subpopulations of rodent fetal, postnatal, adult Neural SCs (NSCs) and postnatal glial progenitors, Olfactory Ensheathing Cells (OECs), respectively from the subventricular zone (SVZ) and the olfactory bulb (OB). Cell lysates were analyzed by proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy leading to metabolites identification and quantitation. Subsequent multivariate analysis of NMR data by Principal Component Analysis (PCA), and Partial Least Square Discriminant Analysis (PLS-DA) allowed data reduction and cluster analysis. This strategy ensures the definition of specific features in the metabolic content of phenotypically similar SCs sharing a common developmental origin. The metabolic fingerprints for selective metabolites or for the whole spectra demonstrated enhanced peculiarities among cell types. The key result of our work is a neat divergence between OECs and the remaining NSC cells. We also show that statistically significant differences for selective metabolites characterizes NSCs of different ages. Finally, the retrived metabolome in cell cultures correlates to the physiological SC features, thus allowing an integrated bioengineering approach for biologic fingerprints able to dissect the (neural) SC molecular specificitie

    Antibodies against the node of Ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera.

    No full text
    IgG4 antibodies against neurofascin (Nfasc155 and Nfasc140/186), contactin (CNTN1) and contactin-associated protein (Caspr1) are described in specific subtypes of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Our objective was to assess, in a real-life practice, the incidence, the clinical features and the response to treatment of these forms of CIDP. 1500 sera of patients suspected of having CIDP from France, Belgium and Switzerland were prospectively tested using a flow cytometry technique. The characteristics of patients with antibodies against the node of Ranvier were compared to 100 seronegative CIDP from our department. IgG4 antibodies against Nfasc155, CNTN1, and Caspr1 were, respectively, detected in 15 (prevalence 1%), 10 (0.7%) and 2 (0.2%) sera. Antibodies specific of the Nfasc140/186 were not detected. All subjects with antibodies against the node of Ranvier fulfilled diagnostic criteria for CIDP. CIDP with anti-Nfasc155 were younger, had more sensory ataxia and postural tremor than seronegative CIDP. CIDP with anti-CNTN1 had more frequent subacute onset and facial paralysis, commoner renal involvement with membranous glomerulonephritis and greater disability, than seronegative CIDP. CIDP with anti-Caspr1 had more frequent respiratory failure and cranial nerve involvement but not more neuropathic pain than seronegative CIDP. Intravenous immunoglobulins were ineffective in most seropositive patients. Rituximab produced dramatic improvement in disability and decreased antibodies titres in 13 seropositive patients (8 with anti-Nfasc155 and 5 with anti-CNTN1 antibodies). Although rare, anti-paranodal antibodies are clinically valuable, because they are associated with specific phenotypes and therapeutic response

    Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor?

    No full text
    The aetiology of idiopathic scoliosis (IS) remains unknown; however, there is a growing body of evidence suggesting that the spine deformity could be the expression of a subclinical nervous system disorder. A defective sensory input or an anomalous sensorimotor integration may lead to an abnormal postural tone and therefore the development of a spine deformity. Inhibition of the motor cortico-cortical excitability is abnormal in dystonia. Therefore, the study of cortico-cortical inhibition may shed some insight into the dystonia hypothesis regarding the pathophysiology of IS. Paired pulse transcranial magnetic stimulation was used to study cortico-cortical inhibition and facilitation in nine adolescents with IS, five teenagers with congenital scoliosis (CS) and eight healthy age-matched controls. The effect of a previous conditioning stimulus (80% intensity of resting motor threshold) on the amplitude of the motor-evoked potential induced by the test stimulus (120% of resting motor threshold) was examined at various interstimulus intervals (ISIs) in both abductor pollicis brevis muscles. The results of healthy adolescents and those with CS showed a marked inhibitory effect of the conditioning stimulus on the response to the test stimulus at interstimulus intervals shorter than 6 ms. These findings do not differ from those reported for normal adults. However, children with IS revealed an abnormally reduced cortico-cortical inhibition at the short ISIs. Cortico-cortical inhibition was practically normal on the side of the scoliotic convexity while it was significantly reduced on the side of the scoliotic concavity. In conclusion, these findings support the hypothesis that a dystonic dysfunction underlies in IS. Asymmetrical cortical hyperexcitability may play an important role in the pathogenesis of IS and represents an objective neurophysiological finding that could be used clinically
    corecore