72 research outputs found

    Carcinogenicity of Styrene Oxide: Calculation of Chemical Reactivity

    Get PDF
    In this article the calculations of the activation free energy for a chemical reaction between styrene-7,8-oxide and DNA, in particular guanine at position N7, are reported. Calculations were performed by Hartree-Fock and DFT methods in conjunction with flexible basis sets. Effects of solvation were considered using the Langevin dipoles method. The calculated activation free energies are in good agreement with the experimental value of 26.52 kcal mol−1

    The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes

    Get PDF
    Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic activities and their inhibition. As an illustrative example, the later will focus on the monoamine oxidase family of enzymes, which catalyze the degradation of amine neurotransmitters in various parts of the brain, the imbalance of which is associated with the development and progression of a range of neurodegenerative disorders. Inhibitors that act mainly on MAO A are used in the treatment of depression, due to their ability to raise serotonin concentrations, while MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Our results give strong support that both MAO isoforms, A and B, operate through the hydride transfer mechanism. Relevance of MAO catalyzed reactions and MAO inhibition in the context of neurodegeneration will be discussed

    Hydrogen Bond Dynamics of Histamine Monocation in Aqueous Solu-tion: How Geometric Parameters Influence the Hydrogen Bond Strength

    Get PDF
    Chemometric statistical approaches involving multiple linear regression (MLR) and principal compo-nent analysis (PCA) were employed on a set of 42 distinct snapshot structures of the physiological histamine monocation in aqueous solution along the Car-Parrinello molecular dynamics trajectory, in order to obtain a better insight into the relationship between the geometry parameters of the system and the resulting νNH stretching frequencies. A simple 2D linear regression of νNH with Namino•••Owater distances gave a very poor correlation (R2 = 0.42), but both MLR and PCA with the inclusion of four directly bonded water molecules offered a notably predictive model that is even able to distinguish two classes of structures based on the Cl– counterion position. Taking into account waters from the first, second and third solvation shells, sequentially diminished the overall predictive ability of the model, yet increased the number of useful predictors that, in the largest model with 51 solvent mole-cules, all correspond to bulk water, implying that both chemometric methods are consistent in suggest-ing that fundamental histamine N–H stretching vibrations are very complex in nature and strongly coupled to the fluctuating environ-ment

    Photodissociation Dynamics of the Iodine-Arene Charge-Transfer Complex

    Get PDF
    The photodissociation reaction of the molecular iodine:arene charge-transfer (CT) complex into an iodine atom and an iodine atom-arene fragment has been investigated using femtosecond pump-probe, resonance Raman, and molecular dynamics simulations. In the condensed phase the reaction proceeds on a time scale of less than 25 fs, in sharp contrast to the gas phase where the excited state lifetime of the complex is about 1 ps. Since little CT resonance enhancement is found in Raman studies on the I2-stretch vibration, it is concluded that rapid curve crossing occurs from the CT state to a dissociative surface. Of particular interest is the finding that the polarization anisotropy of the iodine atom:arene (I:ar) photoproduct decays on a time scale of 350 fs both in pure arene solvents as well as in mixed arene/cyclohexane solutions. This latter finding rules out that secondary I:ar complex formation is the main cause of this ultrafast depolarization effect. The initial polarization anisotropy is found to be ~0.12 in pure mesitylene and ~0.34 in mixed mesitylene/cyclohexane solutions. Semiempirical configuration-interaction calculations show that, except for the axial CT complex, the transition dipole is aligned almost parallel to the normal of the arene plane. The oscillator strength of the CT transition is found to be maximal in the oblique conformation with the I2 molecule positioned at an angle of about 30° with respect to the arene normal. This iodine angular dependence of the oscillator strength leads to photoselection of bent I2:ar complexes in pump-probe experiments. Molecular dynamics simulations confirm earlier findings that the I2:benzene complex is a fragile entity and that it persists only for a few hundred femtoseconds. These simulations also provide the proper time scale for the decay of the polarization anisotropy. The fact that the photoproduct experiences a substantial torque in the dissociation process explains the absence of a cage effect in this reaction.

    The Effect of Deuteration on the H2 Receptor Histamine Binding Profile: A Computational Insight into Modified Hydrogen Bonding Interactions

    Get PDF
    We used a range of computational techniques to reveal an increased histamine affinity for its H2 receptor upon deuteration, which was interpreted through altered hydrogen bonding interactions within the receptor and the aqueous environment preceding the binding. Molecular docking identified the area between third and fifth transmembrane α-helices as the likely binding pocket for several histamine poses, with the most favorable binding energy of −7.4 kcal mol−1 closely matching the experimental value of −5.9 kcal mol−1. The subsequent molecular dynamics simulation and MM-GBSA analysis recognized Asp98 as the most dominant residue, accounting for 40% of the total binding energy, established through a persistent hydrogen bonding with the histamine −NH3+ group, the latter further held in place through the N–H∙∙∙O hydrogen bonding with Tyr250. Unlike earlier literature proposals, the important role of Thr190 is not evident in hydrogen bonds through its −OH group, but rather in the C–H∙∙∙π contacts with the imidazole ring, while its former moiety is constantly engaged in the hydrogen bonding with Asp186. Lastly, quantum-chemical calculations within the receptor cluster model and utilizing the empirical quantization of the ionizable X–H bonds (X = N, O, S), supported the deuteration- induced affinity increase, with the calculated difference in the binding free energy of −0.85 kcal mol−1, being in excellent agreement with an experimental value of −0.75 kcal mol−1, thus confirming the relevance of hydrogen bonding for the H2 receptor activation

    Why monoamine oxidase B preferably metabolizes N-methylhistamine over histamine: evidence from the multiscale simulation of the rate-limiting step

    Get PDF
    Histamine levels in the human brain are controlled by rather peculiar metabolic pathways. In the first step, histamine is enzymatically methylated at its imidazole Nτ atom, and the produced N- methylhistamine undergoes an oxidative deamination catalyzed by monoamine oxidase B (MAO-B), as is common with other monoaminergic neurotransmitters and neuromodulators of the central nervous system. The fact that histamine requires such a conversion prior to oxidative deamination is intriguing since MAO-B is known to be relatively promiscuous towards monoaminergic substrates ; its in-vitro oxidation of N-methylhistamine is about 10 times faster than that for histamine, yet this rather subtle difference appears to be governing the decomposition pathway. This work clarifies the MAO-B selectivity toward histamine and N- methylhistamine by multiscale simulations of the rate-limiting hydride abstraction step for both compounds in the gas phase, in aqueous solution, and in the enzyme, using the established empirical valence bond methodology, assisted by gas-phase density functional theory (DFT) calculations. The computed barriers are in very good agreement with experimental kinetic data, especially for relative trends among systems, thereby reproducing the observed MAO-B selectivity. Simulations clearly demonstrate that solvation effects govern the reactivity, both in aqueous solution as well as in the enzyme although with an opposing effect on the free energy barrier. In the aqueous solution, the transition-state structure involving histamine is better solvated than its methylated analog, leading to a lower barrier for histamine oxidation. In the enzyme, the higher hydrophobicity of N-methylhistamine results in a decreased number of water molecules at the active side, leading to decreased dielectric shielding of the preorganized catalytic electrostatic environment provided by the enzyme. This renders the catalytic environment more efficient for N- methylhistamine, giving rise to a lower barrier relative to histamine. In addition, the transition state involving N-methylhistamine appears to be stabilized by the surrounding nonpolar residues to a larger extent than with unsubstituted histamine, contributing to a lower barrier with the forme

    Hydride Abstraction as the Rate-Limiting Step of the Irreversible Inhibition of Monoamine Oxidase B by Rasagiline and Selegiline: A Computational Empirical Valence Bond Study

    Get PDF
    Monoamine oxidases (MAOs) catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders, and are, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. Still, despite this practical significance, the precise molecular mechanism underlying the irreversible MAO inhibition with clinically used propargylamine inhibitors rasagiline and selegiline is still not unambiguously determined, which hinders the rational design of improved inhibitors devoid of side effects current drugs are experiencing. To address this challenge, we present empirical valence bond QM/MM simulations of the rate-limiting step of the MAO inhibition involving the hydride anion transfer from the inhibitor α-carbon onto the N5 atom of the flavin adenin dinucleotide (FAD) cofactor. The proposed mechanism is strongly supported by the obtained free energy profiles, which confirm a higher reactivity of selegiline over rasagiline, while the calculated difference in the activation Gibbs energies of ∆∆G‡ = 3.1 kcal mol−1 is found to be in very good agreement with that from the measured literature kinact values that predict a 1.7 kcal mol−1 higher selegiline reactivity. Given the similarity with the hydride transfer mechanism during the MAO catalytic activity, these results verify that both rasagiline and selegiline are mechanism- based irreversible inhibitors and offer guidelines in designing new and improved inhibitors, which are all clinically employed in treating a variety of neuropsychiatric and neurodegenerative conditions

    Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR)

    Get PDF
    This study aimed to design and functionally characterize peptide mimetics of the nanobody (Nb) related to the β2-adrenergic receptor (β2-AR) (nanobody-derived peptide, NDP). We postulated that the computationally derived and optimized complementarity-determining region 3 (CDR3) of Nb is sufficient for its interaction with receptor. Sequence-related Nb-families preferring the agonist-bound active conformation of β2-AR were analysed using the informational spectrum method (ISM) and β2-AR:NDP complexes studied using protein-peptide docking and molecular dynamics (MD) simulations in conjunction with metadynamics calculations of free energy binding. The selected NDP of Nb71, designated P3, was 17 amino acids long and included CDR3. Metadynamics calculations yielded a binding free energy for the β2-AR:P3 complex of ΔG = (−7.23 ± 0.04) kcal/mol, or a Kd of (7.9 ± 0.5) μM, for T = 310 K. In vitro circular dichroism (CD) spectropolarimetry and microscale thermophoresis (MST) data provided additional evidence for P3 interaction with agonist-activated β2-AR, which displayed ~10-fold higher affinity for P3 than the unstimulated receptor (MST-derived EC50 of 3.57 µM vs. 58.22 µM), while its ability to inhibit the agonist-induced interaction of β2-AR with β-arrestin 2 was less evident. In summary, theoretical and experimental evidence indicated that P3 preferentially binds agonist-activated β2-AR. © 2019, The Author(s)
    corecore