7 research outputs found

    Moleculary imprinted micro- and nanoparticles for cancer associated glycan motifs

    No full text
    Sialic acids are an important family of monosaccharides that are typically found as terminal moieties of glycans. Aberrant sialylation has been proven to correlate with various diseases including cancer. Glycosylation analysis is complex due to high diversityof the glycan isomers and their low abundance. Antibodies and lectins are commonly used in glycan purification and enrichment. However, high cost, poor availability, and limitation in storage/testing conditions hinders their application on a broader scale. This thesis is focused on the development of alternative glycan specific receptors with their potential applications in glycomics and cell imaging. The underlying technique for producing the synthetic receptors is molecular imprinting. Highly complementary binding sites are formed by fixing pre-ordered template/functional monomer complexes into a highly crosslinked polymer matrix. Fundamental investigation of this intermolecular imprinting approach in the imprinting of glycosylated targets is reported here. The core of this study focuses on the elucidation of relative contribution of orthogonally interacting functional monomers, their structural tuning and the importance of monomer, solvent and counterion choice on the imprinting. Molecularly imprinted polymers (MIPs) are developed as particles of different sizes for glycan/glycopeptide enrichment applications or combined with fluorescent reportergroups for use as glycan imaging nanolabels. Special attention is given to the improvement of sialic acid MIP selectivities toward particular structures associated with cancer biomarkers. Development of MIPs against such complex targets includes design of linkage selective MIPs with comprehensive studies of the affinities and selectivities of the final glycan specific materials

    Combinatorial design of a sialic acid imprinted binding site exploring a dual ion receptor approach

    No full text
    Aberrant sialic acid expression is one of the key indicators of pathological processes. This acidic saccharide is overexpressed in tumor cells and is a potent biomarker. Development of specific capture tools for various sialylated targets is an important step for early cancer diagnosis. However, sialic acid recognition by synthetic hosts is often complicated due to the competition for the anion binding by their counterions, such as Na+ and K+. Here we report on the design of a sialic acid receptor via simultaneous recognition of both the anion and cation of the target analyte. The polymeric receptor was produced using neutral (thio)urea and crown ether based monomers for simultaneous complexation of sialic acid's carboxylate group and its countercation. Thiourea and urea based functional monomers were tested both in solution by 1H NMR titration and in a polymer matrix system for their ability to complex the sodium salt of sialic acid alone and in the presence of crown ether. Combination of both orthogonally acting monomers resulted in higher affinities for the template in organic solvent media. The imprinted polymers displayed enhanced sialic acid recognition driven to a significant extent by the addition of the macrocyclic cation host. The effect of various counterions and solvent systems on the binding affinities is reported. Binding of K+, Na+ and NH4+ salts of sialic acid exceeded the uptake of bulky lipophilic salts. Polymers imprinted with sialic or glucuronic acids displayed a preference for their corresponding templates and showed a promising enrichment of sialylated peptides from the tryptic digest of glycoprotein bovine fetuin

    Elucidation of the Binding Orientation in α2,3- and α2,6-Linked Neu5Ac-Gal Epitopes toward a Hydrophilic Molecularly Imprinted Monolith.

    No full text
    N-Acetylneuraminic acid and its α2,3/α2,6-glycosidic linkages with galactose (Neu5Ac-Gal) are major carbohydrate antigen epitopes expressed in various pathological processes, such as cancer, influenza, and SARS-CoV-2. We here report a strategy for the synthesis and binding investigation of molecularly imprinted polymers (MIPs) toward α2,3 and α2,6 conformations of Neu5Ac-Gal antigens. Hydrophilic imprinted monoliths were synthesized from melamine monomer in the presence of four different templates, namely, N-acetylneuraminic acid (Neu5Ac), N-acetylneuraminic acid methyl ester (Neu5Ac-M), 3′-sialyllactose (3SL), and 6′-sialyllactose (6SL), in a tertiary solvent mixture at temperatures varying from −20 to +80 °C. The MIPs prepared at cryotemperatures showed a preferential affinity for the α2,6 linkage sequence of 6SL, with an imprinting factor of 2.21, whereas the α2,3 linkage sequence of 3SL resulted in nonspecific binding to the polymer scaffold. The preferable affinity for the α2,6 conformation of Neu5Ac-Gal was evident also when challenged by a mixture of other mono- and disaccharides in an aqueous test mixture. The use of saturation transfer difference nuclear magnetic resonance (STD-NMR) on suspensions of crushed monoliths allowed for directional interactions between the α2,3/α2,6 linkage sequences on their corresponding MIPs to be revealed. The Neu5Ac epitope, containing acetyl and polyalcohol moieties, was the major contributor to the sequence recognition for Neu5Ac(α2,6)Gal(β1,4)Glc, whereas contributions from the Gal and Glc segments were substantially lower

    Dual-stimuli sensitive hybrid materials: Ferritin-PDMAEMA by grafting-from polymerization

    No full text
    The combination of stimuli-responsive polymers and proteins that can transport drugs is a promising approach for drug delivery. The formation of ferritin–poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) conjugates by atom-transfer radical polymerization from the protein macroinitiator is described. PDMAEMA is a dual-stimuli-responsive polymer and the thermo- and pH-responsive properties of the resulting conjugates are studied in detail with dynamic light scattering (DLS). Additionally, it is demonstrated that the lower critical solution temperature (LCST) of the protein–polymer conjugates can be further adjusted by the ionic strength of the solution. The conjugates are also characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry, and NMR spectroscopy. The obtained MALDI-ToF mass spectra are exceptional for protein–polymer conjugates and have not been so often reported

    High salt compatible oxyanion receptors by dual ion imprinting

    No full text
    The design of hosts for either cations or anions is complicated due to the competition for binding by the host or guest counterions. Imprinting relying on self-assembly offers the possibility to stabilize the guest and its counterion in a favorable geometry. We here report on a comprehensive supramolecular approach to anion receptor design relying on concurrent recognition of both anion and cation. This was achieved by high order complex imprinting of the disodium salt of phenyl-phosphonic acid in combination with neutral urea and sodium ion selective 18-crown-6 monomers. The polymers displayed enhanced affinity for the template or inorganic phosphate or sulfate in competitive aqueous buffers, with affinity and selectivity increasing with increasing ionic strength. The presence of engineered sites for both ionic species dramatically increases the salt uptake in strongly competitive media such as brine

    Oxoanion Imprinting Combining Cationic and Urea Binding Groups : A Potent Glyphosate Adsorber

    No full text
    The use of polymerizable hosts in anion imprinting has led to powerful receptors with high oxyanion affinity and specificity in both aqueous and non-aqueous environments. As demonstrated in previous reports, a carefully tuned combination of orthogonally interacting binding groups, for example, positively charged and neutral hydrogen bonding monomers, allows receptors to be constructed for use in either organic or aqueous environments, in spite of the polymer being prepared in non-competitive solvent systems. We here report on a detailed experimental design of phenylphosphonic and benzoic acid-imprinted polymer libraries prepared using either urea-or thiourea-based host monomers in the presence or absence of cationic comonomers for charge-assisted anion recognition. A comparison of hydrophobic and hydrophilic crosslinking monomers allowed optimum conditions to be identified for oxyanion binding in non-aqueous, fully aqueous, or high-salt media. This showed that recognition improved with the water content for thiourea-based molecularly imprinted polymers (MIPs) based on hydrophobic EGDMA with an opposite behavior shown by the polymers prepared using the more hydrophilic crosslinker PETA. While the affinity of thiourea-based MIPs increased with the water content, the opposite was observed for the oxourea counterparts. Binding to the latter could however be enhanced by raising the pH or by the introduction of cationic amine-or Na+-complexing crown ether-based comonomers. Use of high-salt media as expected suppressed the amine-based charge assistance, whereas it enhanced the effect of the crown ether function. Use of the optimized receptors for removing the ubiquitous pesticide glyphosate from urine finally demonstrated their practical utility

    Discrimination between sialic acid linkage modes using sialyllactose-imprinted polymers

    No full text
    Glycosylation plays an important role in various pathological processes such as cancer. One key alteration in the glycosylation pattern correlated with cancer progression is an increased level as well as changes in the type of sialylation. Developing molecularly-imprinted polymers (MIPs) with high affinity for sialic acid able to distinguish different glycoforms such as sialic acid linkages is an important task which can help in early cancer diagnosis. Sialyllactose with alpha 2,6 ' vs. alpha 2,3 ' sialic acid linkage served as a model trisaccharide template. Boronate chemistry was employed in combination with a library of imidazolium-based monomers targeting the carboxylate group of sialic acid. The influence of counterions of the cationic monomers and template on their interactions was investigated by means of H-1 NMR titration studies. The highest affinities were afforded using a combination of Br- and Na+ counterions of the monomers and template, respectively. The boronate ester formation was confirmed by MS and H-1/B-11 NMR, indicating 1 : 2 stoichiometries between sialyllactoses and boronic acid monomer. Polymers were synthesized in the form of microparticles using boronate and imidazolium monomers. This combinatorial approach afforded MIPs selective for the sialic acid linkages and compatible with an aqueous environment. The molecular recognition properties with respect to saccharide templates and glycosylated targets were reported
    corecore