7 research outputs found

    Decomposed Phase Analysis using Convex Inner Approximations: a Methodology for DER Hosting Capacity in Distribution Systems

    Full text link
    This paper uses convex inner approximations (CIA) of the AC power flow to tackle the optimization problem of quantifying a three-phase distribution feeder's capacity to host distributed energy resources (DERs). This is often connoted hosting capacity (HC), but herein we consider separative bounds for each node on positive and negative DER injections, which ensures that injections within these nodal limits satisfy feeder voltage and current limits and across nodes sum up to the feeder HC. The methodology decomposes a three-phase feeder into separate phases and applies CIA-based techniques to each phase. An analysis is developed to determine the technical condition under which this per-phase approach can still guarantee three-phase constraints. New approaches are then presented that modify the per-phase optimization problems to overcome conservativeness inherent to CIA methods and increase HC, including selectively modifying the per-phase impedances and iteratively relaxing per-phase voltage bounds. Discussion is included on trade-offs and feasibility. To validate the methodology simulation-based analysis is conducted with the IEEE 37-node test feeder and a real 534-node unbalanced radial distribution feeder.Comment: 9 pages, submitted to PSCC 2024 conferenc

    Enhancing grid reliability with coordination and control of distributed energy resources

    Get PDF
    The growing utilization of renewable energy resources (RES) within power systems has brought about new challenges due to the inherent uncertainty associated with RES, which makes it challenging to accurately forecast available generation. Further- more, the replacement of synchronous machines with inverter-based RES results in a reduction of power system inertia, complicating the task of maintaining a balance between generation and consumption. In this dissertation, coordinating Distributed Energy Resources (DER) is presented as a viable solution to these challenges.DERs have the potential to offer different ancillary services such as fast frequency response (FFR) when efficiently coordinated. However, the practical implementation of such services demands both effective local sensing and control at the device level and the ability to precisely estimate and predict the availability of synthetic damping from a fleet in real time. Additionally, the inherent trade-off between a fleet being available for fast frequency response while providing other ancillary services needs to be characterized. This dissertation introduces a fully decentralized, packet-based controller for a diverse range of flexible loads. This controller dynamically prioritizes and interrupts DERs to generate synthetic damping suitable for primary frequency control. Moreover, the packet-based control methodology is demonstrated to accu- rately assess the real-time availability of synthetic damping. Furthermore, spectral analysis of historical frequency regulation data is employed to establish a probabilis- tic bound on the expected synthetic damping available for primary frequency control from a fleet and the trade-off of concurrently offering secondary frequency control. It is noteworthy that coordinating a large number of DERs can potentially result in grid constraint violations. To tackle this challenge, this dissertation employs con- vex inner approximations (CIA) of the AC power flow to address the optimization problem of quantifying the capacity of a three-phase distribution feeder to accommo- date DERs. This capacity is often referred to as hosting capacity (HC). However, in this work, we consider separate limits for positive and negative DER injections at each node, ensuring that injections within these nodal limits adhere to feeder voltage and current constraints. The methodology dissects a three-phase feeder into individual phases and applies CIA-based techniques to each phase. Additionally, new approaches are introduced to modify the per-phase optimization problems to mitigate the inherent conservativeness associated with CIA methods and enhance HC. This includes selectively adjusting the per-phase impedances and proposing an iterative relaxation method for per-phase voltage bounds

    Multiobjective robust power system expansion planning considering generation units retirement

    No full text
    This paper presents a mixed-integer linear robust multiobjective model for the expansion planning of an electric power system. An information-gap decision theory-based framework is proposed to take into account the uncertainties in electrical demand and new power system elements prices. The model is intended to increase the power system resistance against the uncertainties caused by forecast errors. The normal boundary intersection method is used to obtain the Pareto front of the multiobjective problem. Since the planning problem is a large-scale problem, the model is kept linear using the Big M linearization technique that is able to significantly decrease the computational burden. The fuel transportation and availability constraints are taken into account. The model also enables the system planner to build new fuel transportation routes whenever it is necessary. The generating units' retirement is also incorporated into the model, and the simulation results are showed to the advantages of incorporating units' retirement in the power system expansion planning model instead of considering it separately. The proposed multiobjective method is applied to the Garver 6-bus, IEEE 24-bus, and IEEE 118-bus test systems, and the results are compared with the well-known epsilon-constraint method
    corecore