1,314 research outputs found

    Evaluation of a commercially available rapid urinary porphobilinogen test

    Get PDF
    Background: Demonstration of substantially increased urinary excretion of porphobilinogen is the cornerstone of diagnosing acute porphyria crisis. Because porphobilinogen testing is not implemented on clinical chemistry analysers, respective analyses are available in rather few clinical laboratories. The aim of this study was to critically describe and to evaluate a semi-quantitative rapid test for urinary porphobilinogen determination which is commercially available and recommended by the American Porphyria Foundation. Methods: Urinary samples from patients with acute intermittent porphyria and control samples were analysed and the semi-quantitative results were compared with the results obtained by a manual quantitative spectrophotometric method. Results: In all 32 samples studied, acceptable agreement between the results of the rapid test and the quantitative test was observed. Handling of the test was found to be convenient. Conclusions: The assay was found to be reliable and has the potential to increase the availability of porphobilinogen testing in the field

    Charging NOx Emitters for Health Damages: An Exploratory Analysis

    Get PDF
    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides (NOx = NO NO2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in the health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.

    Charging NO x Emitters for Health Damages: An Exploratory Analysis

    Get PDF
    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3) produced from nitrogen oxides (NO x = NO + NO 2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with eXtensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NO x regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.surface ozone, NO x emissions, point sources, health impacts, mortality, morbidity, cap-and-trade

    Photo-initiated ion formation from octaethyl-porphyrin and its zinc chelate as a model for electron transfer in reaction centers

    Get PDF
    Ion formation from the reaction of triplet (T) and ground state (P) octaethyl-porphyrin (OEP) and zinc octaethyl porphyrin (ZnOEP) and the corresponding cross-reactions have been measured in dry acetonitrile. A uniquely sensitive and fast conductance apparatus and a pulsed dye laser allowed the measurements to be made at the necessarily very low concentrations of T. The hemogeneous reaction of T (ZnOEP) and P (ZnOEP) occurs with rat constant k(1) = 2.0 x 10(8) M(-1)s(-1) and an ion yield of 67%. The similar homogeneous reaction of OEP has k(2) = 1.3 x 10(8)M(-1)s(-1) but an ion yield of only 3%. The cross-reaction of T (OEP) with P (ZnOEP) has k(3) = 1.5 x 10(8) M(-1)s(-1) and an ion yield of 27%, while the inverse cross-reaction of T (ZnOEP) with P (OEP) has k(4) = 3 x 10(8) M(-1)s(-1) and an ion yield of 20%. Thus, the rate constants are only slightly affected but the yields are sensitive to the porphyrin. The possible formation of the heterogeneous ions ZnOEP+ + OEP-, thermodynamically favored by 0.3 V over the homogeneous ions, has little influence on the observed yields. The data are explained by electron transfer and Coulomb field-electon spin-controlled escape of the initial ion-pair

    Reduction of solar photovoltaic resources due to air pollution in China

    Get PDF
    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity
    • …
    corecore