653 research outputs found

    A study of the Sunyaev-Zel'dovich increment using archival SCUBA data

    Get PDF
    In a search for evidence of the short wavelength increment in the Sunyaev-Zel'dovich (SZ) effect, we have analyzed archival galaxy cluster data from the Sub-millimetre Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope, resulting in the most complete pointed survey of clusters at 850 microns to date. SCUBA's 850 microns passband overlaps the peak of the SZ increment. The sample consists of 44 galaxy clusters in the range 0 < z < 1.3. Maps of each of the clusters have been made and sources have been extracted; as an ancillary product we generate the most thorough galaxy cluster point source list yet from SCUBA. Seventeen of these clusters are free of obvious AGN and have data deep enough to provide interesting measurements of the expected SZ signal. Specialized analysis techniques are employed to extract the SZ effect signal from these SCUBA data, including using SCUBA's short wavelength band as an atmospheric monitor and fitting the long wavelength channel to a model of the spatial distribution of each cluster's SZ effect. By explicitly excising the exact cluster centre from our analysis we demonstrate that emission from galaxies within the cluster does not contaminate our measurement. The SZ amplitudes from our measurements are consistently higher than the amplitudes inferred from low frequency measurements of the SZ decrement.Comment: 27 pages, 6 figures, replacement matches version published in MNRA

    Superconducting On-chip Fourier Transform Spectrometer

    Get PDF
    The kinetic inductance effect is strongly nonlinear with applied current in NbTiN, TiN and NbN thin films. This can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling on-chip spectrometers. Utility of such compact spectrometers is discussed, along with their natural connection with parametric amplifiers

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G

    The AzTEC mm-Wavelength Camera

    Get PDF
    AzTEC is a mm-wavelength bolometric camera utilizing 144 silicon nitride micromesh detectors. Herein we describe the AzTEC instrument architecture and its use as an astronomical instrument. We report on several performance metrics measured during a three month observing campaign at the James Clerk Maxwell Telescope, and conclude with our plans for AzTEC as a facility instrument on the Large Millimeter Telescope.Comment: 13 pages, 15 figures, accepted for publication in Monthly Notice

    A strained silicon cold electron bolometer using Schottky contacts

    Get PDF
    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10−16 W Hz−1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz−1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz−1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise

    The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees

    Get PDF
    We describe the BOOMERANG North America (BNA) instrument, a balloon-borne bolometric radiometer designed to map the Cosmic Microwave Background (CMB) radiation with 0.3 deg resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques which are described and compared. It has been able to obtain a measurement of the first peak in the CMB angular power spectrum in a single balloon flight, few hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB) experiment.Comment: 40 pages, 22 figures, submitted to Ap

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap

    Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    Get PDF
    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}

    Superconducting On-chip Fourier Transform Spectrometer

    Get PDF
    The kinetic inductance effect is strongly nonlinear with applied current in NbTiN, TiN and NbN thin films. This can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling on-chip spectrometers. Utility of such compact spectrometers is discussed, along with their natural connection with parametric amplifiers

    CLOVER - A new instrument for measuring the B-mode polarization of the CMB

    Full text link
    We describe the design and expected performance of Clover, a new instrument designed to measure the B-mode polarization of the cosmic microwave background. The proposed instrument will comprise three independent telescopes operating at 90, 150 and 220 GHz and is planned to be sited at Dome C, Antarctica. Each telescope will feed a focal plane array of 128 background-limited detectors and will measure polarized signals over angular multipoles 20 < l < 1000. The unique design of the telescope and careful control of systematics should enable the B-mode signature of gravitational waves to be measured to a lensing-confusion-limited tensor-to-scalar ratio r~0.005.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXVIXth Rencontres de Moriond "Exploring the Universe
    corecore