78 research outputs found

    Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation

    Get PDF
    Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors

    Capital Structure and Oligarch Ownership

    Get PDF
    This study examines the effects of oligarch ownership on corporate capital structures. Using panel data from Ukraine, I find that oligarch-owned companies employ significantly more debt and liabilities than their peers. However, there is no direct relation between oligarch ownership and target capital structure. Whereas the determinants of target leverage are similar across all owners, differences in firm characteristics also have a fairly small effect. I show that larger leverage is due to better access to debt, which results in lower rebalancing costs and faster restructurings of oligarch-owned companies. The findings clearly suggest that oligarchs benefit from the accumulated advantages

    Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks

    Get PDF
    Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas (‘fishery squeeze’) and fishing along reserve borders (‘fishing-the-line’) considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of ‘total movement’ (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (Ï„Îœ and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    The significance of genome-wide transcriptional regulation in the evolution of stress tolerance.

    Get PDF
    It is widely recognized that stress plays an important role in directing the adaptive adjustment of an organism to changing environments. However, very little is known about the evolution of mechanisms that promote stress-induced variation. Adaptive transcriptional responses have been implicated in the evolution of tolerance to natural and anthropogenic stressors in the environment. Recent technological advances in transcriptomics provide a mechanistic understanding of biological pathways or processes involved in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and provide insight into the reaction norms of identified target genes in response to specific stressors. We argue that plasticity in gene expression reaction norms may be important in the evolution of stress tolerance and adaptation to environmental stress. This review highlights the consequences of transcriptional plasticity of stress responses within a single generation and concludes that gene promoters containing a TATA box are more capable of rapid and variable responses than TATA-less genes. In addition, the consequences of plastic transcriptional responses to stress over multiple generations are discussed. Based on examples from the literature, we show that constitutive over expression of specific stress response genes results in stress adapted phenotypes. However, organisms with an innate capacity to buffer stress display plastic transcriptional responses. Finally, we call for an improved integration of the concept of phenotypic plasticity with studies that focus on the regulation of transcription. © Springer Science+Business Media B.V. 2010

    Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research

    Full text link
    • 

    corecore