275 research outputs found

    Excitation of longitudinal coupled-bunch oscillations with the wide-band cavity in the CERN PS

    Get PDF
    Longitudinal coupled-bunch oscillations in the CERN Proton Synchrotron have been studied in the past years and they have been recognized as one of the major challenges to reach the high brightness beam required by the High Luminosity LHC project. In the frame of the LHC Injectors Upgrade project in 2014 a new wide-band Finemet cavity has been installed in the Proton Synchrotron as a part of the coupled-bunch feedback system. To explore the functionality of the Finemet cavity during 2015 a dedicated measurement campaign has been performed. Coupled-bunch oscillations have been excited with the cavity around each harmonic of the revolution frequency with both a uniform and nominal filling pattern. In the following the measurements procedure and results are presented

    Longitudinal and Quadrupolar Coupling Impedance of an Elliptical Vacuum Chamber With Finite Conductivity in Terms of Mathieu Functions

    Get PDF
    The resistive wall impedance of an elliptical vacuum chamber in the classical regime with infinite thickness is known analytically for ultra-relativistic beams by means of the Yokoya form factors. Starting from the longitudinal electric field of a point charge moving at arbitrary speed in an elliptical vacuum chamber, which we express in terms of Mathieu functions, in this paper we take into account the finite conductivity of the beam pipe walls and evaluate the longitudinal and quadrupolar impedance for any beam velocity. We also obtain that the quadrupolar impedance of a circular pipe is different from zero, approaching zero only for ultra-relativistic particles. Even if some of the results, in particular in the ultrarelativistic limit, are already known and expressed in terms of form factors, this approach is the first step towards the calculation of the general problem of a multi-layer vacuum chamber with different conductivities and of elliptic cross section

    Study of the beam-cavity interaction in the PS 10 MHz RF system

    Get PDF
    The eleven main accelerating cavities of the Proton Synchrotron (PS) at CERN consist of two ferrite-loaded coaxial lambda/4 resonators each. Both resonators oscillate in phase, as their gaps are electrically connected by short bars. They are in addition magnetically coupled via the bias loop used for cavity tuning. The cavities are equipped with a wide-band feedback system, limiting the beam loading, and a further reduction of the beam induced voltage is achieved by relays which short-circuit each half-resonator gap when the cavity is not in use. Asymmetries of the beam induced voltage observed in the two half-cavities indicate that the coupling between the two resonators is not as tight as expected. The total cavity impedance coupling to the beam may be affected differently by the contributions of both resonators. A dedicated measurement campaign with high-intensity proton beam and numerical simulation have been performed to investigate the beam-cavity interaction. This paper reports the result of the study and the work aiming at the development of a model of the system, including the wide-band feedback, which reproduces this interaction

    Single Bunch Instabilities in FCC-ee

    Get PDF
    FCC-ee is a high luminosity lepton collider with a centre-of-mass energy from 91 to 365 GeV. Due to the machine parameters and pipe dimensions, collective effects due to electromagnetic fields produced by the interaction of the beam with the vacuum chamber can be one of the main limitations to the machine performance. In this frame, an impedance model is required to analyze these instabilities and to find possible solutions for their mitigation. This paper will present the contributions of specific machine components to the total impedance budget and their effects on the beam stability. Single bunch instability thresholds will be estimated in both transverse and longitudinal planes

    Measurements of the CERN PS longitudinal resistive coupling impedance

    Get PDF
    The longitudinal coupling impedance of the CERN PS has been studied in the past years in order to better understand collective effects which could produce beam intensity limitations for the LHC Injectors Upgrade project. By measuring the incoherent quadrupole synchrotron frequency vs beam intensity, the inductive impedance was evaluated and compared with the impedance model obtained by taking into account the contribution of the most important machine devices. In this paper, we present the results of the measurements performed during a dedicated campaign, of the real part of the longitudinal coupling impedance by means of the synchronous phase shift vs beam intensity. The phase shift has been measured by using two different techniques: in one case, we injected in the machine two bunches, one used as a reference with constant intensity, and the second one changing its intensity; in the second case, more conventional, we measured the bunch position with respect to the RF signal of the 40 MHz cavities. The obtained dependence of the synchrotron phase with intensity is then related to the loss factor and the resistive coupling impedance, which is compared to the real part of the PS impedance model

    Simulation of instability at transition energy with a new impedance model for CERN PS

    Get PDF
    Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neutron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated measurement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitudinal emittances and beam intensities were studied

    Longitudinal beam dynamics simulation in electron rings in strong rf focusing regime

    Get PDF
    Obtaining very short bunches in an electron storage ring is one of the frontiers of the accelerator physics. The strong rf focusing (SRFF) is a way to have short bunches at a given position in the ring, thanks to the principle of the bunch length modulation. Until now, the bunch length modulation has been studied only in the limit of zero current; in this paper we present the results of a simulation code suitable to study the effects of coherent synchrotron radiation and vacuum chamber wakefields on the single bunch longitudinal dynamics in the SRFF regime . The code has been applied to three different lattices that can be realized in the Frascati e^{+}/e^{-} collider DAΦNE for a possible experiment on bunch length modulation

    A multi-physics approach to simulate the RF heating 3D power map induced by the proton beam in a beam intercepting device

    Get PDF
    The project High Luminosity Large Hadron Collider (HL-LHC) calls for a streaking beam intensity and brightness in the LHC machine. In such a scenario, beam-environment electromagnetic interactions are a crucial topic: they could lead to uneven power deposition in machine equipment. The resulting irregular temperature distribution would generate local thermal gradients, this would create mechanical stresses which could lead to cracks and premature failure of accelerator devices. This work presents a method to study this phenomenon by means of coupled electro-thermomechanical simulations. Further, an example of application on a real HL-LHC device is also discussed

    Coupling impedances and collective effects for FCC-ee

    Get PDF
    A very important issue for the Future Circular Collider (FCC) is represented by collective effects due to the selfinduced electromagnetic fields, which, acting back on the beam, could produce dangerous instabilities. In this paper we will focus our work on the FCC electron-positron machine: in particular we will study some important sources of wake fields, their coupling impedances and the impact on the beam dynamics. We will also discuss longitudinal and transverse instability thresholds, both for single bunch and multibunch, and indicate some ways to mitigate such instabilities

    Chromaticity dependence of the transverse effective impedance in the CERN Proton Synchrotron

    Get PDF
    The current knowledge of the transverse beam coupling impedance of the CERN Proton Synchrotron (PS) has been established with beam-based measurements at different energies. The transverse coherent tune shift as a function of the beam intensity has been measured in order to evaluate the total effective imaginary part of the transverse impedance in the accelerator at the energies of 7, 13 and 25 GeV. Measurements have been performed changing the vertical chromaticity for each vertical tune scan with intensity. The data analysis revealed an increase of impedance with chromaticity for all the considered energies. The transverse impedance can be compared with the previously evaluated theoretical impedance budget taking into account the individual contribution of several machine devices
    • …
    corecore