233 research outputs found

    Optimal Dynamical Range of Excitable Networks at Criticality

    Full text link
    A recurrent idea in the study of complex systems is that optimal information processing is to be found near bifurcation points or phase transitions. However, this heuristic hypothesis has few (if any) concrete realizations where a standard and biologically relevant quantity is optimized at criticality. Here we give a clear example of such a phenomenon: a network of excitable elements has its sensitivity and dynamic range maximized at the critical point of a non-equilibrium phase transition. Our results are compatible with the essential role of gap junctions in olfactory glomeruli and retinal ganglionar cell output. Synchronization and global oscillations also appear in the network dynamics. We propose that the main functional role of electrical coupling is to provide an enhancement of dynamic range, therefore allowing the coding of information spanning several orders of magnitude. The mechanism could provide a microscopic neural basis for psychophysical laws.Comment: 2 figures, 6 page

    Long Term and Short Term Effects of Perturbations in a Immune Network Model

    Full text link
    In this paper we review the trajectory of a model proposed by Stauffer and Weisbuch in 1992 to describe the evolution of the immune repertoire and present new results about its dynamical behavior. Ten years later this model, which is based on the ideas of the immune network as proposed by Jerne, has been able to describe a multi-connected network and could be used to reproduce immunization and aging experiments performed with mice. Besides its biological implications, the physical aspects of the complex dynamics of this network is very interesting {\it per se}. The immunization protocol is simulated by introducing small and large perturbations (damages), and in this work we discuss the role of both. In a very recent paper we studied the aging effects by using auto-correlation functions, and the results obtained apparently indicated that the small perturbations would be more important than the large ones, since their cumulative effects may change the attractor of the dynamics. However our new results indicate that both types of perturbations are important. It is the cooperative effects between both that lead to the complex behavior which allows to reproduce experimental results.Comment: 15 pages, 5 figure

    Can dynamical synapses produce true self-organized criticality?

    Full text link
    Neuronal networks can present activity described by power-law distributed avalanches presumed to be a signature of a critical state. Here we study a random-neighbor network of excitable cellular automata coupled by dynamical synapses. The model exhibits a very similar to conservative self-organized criticality (SOC) models behavior even with dissipative bulk dynamics. This occurs because in the stationary regime the model is conservative on average, and, in the thermodynamic limit, the probability distribution for the global branching ratio converges to a delta-function centered at its critical value. So, this non-conservative model pertain to the same universality class of conservative SOC models and contrasts with other dynamical synapses models that present only self-organized quasi-criticality (SOqC). Analytical results show very good agreement with simulations of the model and enable us to study the emergence of SOC as a function of the parametric derivatives of the stationary branching ratio.Comment: 14 pages, 6 figure

    Diversity improves performance in excitable networks

    Get PDF
    As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. Nonetheless, the behavior of the whole network can outperform all subgroups. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.Comment: 17 pages, 7 figure

    Dynamic range of hypercubic stochastic excitable media

    Full text link
    We study the response properties of d-dimensional hypercubic excitable networks to a stochastic stimulus. Each site, modelled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an external Poisson rate h. The response function (mean density of active sites rho versus h) is obtained via simulations (for d=1, 2, 3, 4) and mean field approximations at the single-site and pair levels (for all d). In any dimension, the dynamic range of the response function is maximized precisely at the nonequilibrium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover, the maximum dynamic range attained at a given dimension d is a decreasing function of d.Comment: 7 pages, 4 figure

    On the Aging Dynamics in an Immune Network Model

    Full text link
    Recently we have used a cellular automata model which describes the dynamics of a multi-connected network to reproduce the refractory behavior and aging effects obtained in immunization experiments performed with mice when subjected to multiple perturbations. In this paper we investigate the similarities between the aging dynamics observed in this multi-connected network and the one observed in glassy systems, by using the usual tools applied to analyze the latter. An interesting feature we show here is that the model reproduces the biological aspects observed in the experiments during the long transient time it takes to reach the stationary state. Depending on the initial conditions, and without any perturbation, the system may reach one of a family of long-period attractors. The pertrubations may drive the system from its natural attractor to other attractors of the same family. We discuss the different roles played by the small random perturbations (noise) and by the large periodic perturbations (immunizations)

    Anticipated Synchronization in a Biologically Plausible Model of Neuronal Motifs

    Get PDF
    Two identical autonomous dynamical systems coupled in a master-slave configuration can exhibit anticipated synchronization (AS) if the slave also receives a delayed negative self-feedback. Recently, AS was shown to occur in systems of simplified neuron models, requiring the coupling of the neuronal membrane potential with its delayed value. However, this coupling has no obvious biological correlate. Here we propose a canonical neuronal microcircuit with standard chemical synapses, where the delayed inhibition is provided by an interneuron. In this biologically plausible scenario, a smooth transition from delayed synchronization (DS) to AS typically occurs when the inhibitory synaptic conductance is increased. The phenomenon is shown to be robust when model parameters are varied within physiological range. Since the DS-AS transition amounts to an inversion in the timing of the pre- and post-synaptic spikes, our results could have a bearing on spike-timing-dependent-plasticity models
    corecore