454 research outputs found
Compressive Hyperspectral Imaging Using Progressive Total Variation
Compressed Sensing (CS) is suitable for remote acquisition of hyperspectral
images for earth observation, since it could exploit the strong spatial and
spectral correlations, llowing to simplify the architecture of the onboard
sensors. Solutions proposed so far tend to decouple spatial and spectral
dimensions to reduce the complexity of the reconstruction, not taking into
account that onboard sensors progressively acquire spectral rows rather than
acquiring spectral channels. For this reason, we propose a novel progressive CS
architecture based on separate sensing of spectral rows and joint
reconstruction employing Total Variation. Experimental results run on raw
AVIRIS and AIRS images confirm the validity of the proposed system.Comment: To be published on ICASSP 2014 proceeding
Antitumor Trans Platinum DNA Adducts: NMR and HPLC Study of the Interaction Between a trans-Pt Iminoether Complex and the Deoxy Decamer d(CCTCGCTCTC)·d(GAGAGCGAGG)
The single-stranded oligonucleotide 5âČ-d(CCTCGCTCTC) (I) was reacted with the antitumor trans platinum iminoderivative trans-[PtCl2{E-HN = C(OMe)Me}2] (trans-EE) and subsequently annealed with its complementary strand 5âČ-d(GAGAGCGAGG) (II). The platinated duplex was characterized by 1D and 2D proton NMR spectroscopy at 600 MHz. In agreement with previous studies by different techniques trans-EE was found to form a monofunctional adduct with the duplex involving the guanine residue. The modification by trans-EE has been found to induce only minor local distortion in the duplex geometry. Two key crosspeaks observed in the NOESY map corresponding to a close contact between G5-H8 and the methoxy and the methyl group, respectively, enabled us to dock the trans-EE complex with the duplex by geometry optimization. The results support the idea that the antitumor activity of trans-EE is related to lesion of DNA fundamentally different from that of cisplatin. Unexpectedly, the NOESY spectra indicated that at the high NaCl concentration used (0.2 M) the duplex was found to undergo slow deplatination. This was subsequently proved by HPLC. In a separate experiment on platination of the single strand in a salt free environment the HPLC analysis showed that the monofunctional adduct was not deplatinated, however, after 24 hours, additidnal minor isomers were detected
Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier
Neuroinflammation is the earliest stage of several neurological and neurodegenerative diseases. In the case of neurodegenerative disorders, it takes place about 15Ăą 20 years before the appearance of specific neurodegenerative clinical symptoms. Constitutive microglial COX-1 is one of the pro-inflammatory players of the neuroinflammation. Novel compounds 3, 14 and 15 (Galmof0, Galmof5and Galmof11, respectively) were projected, and their synthetic methodologies developed, by linking by an ester bond, directly or through a C5 or C11 unit linker the highly selective COX-1 inhibitor mofezolac (COXs selectivity index > 6000) to galactose in order to obtain substances capable to cross blood-brain barrier (BBB) and control the CNS inflammatory response. 3, 14 and 15 (Galmofs) were prepared in good to fair yields. Galmof0(3) was found to be a selective COX-1 inhibitor (COX-1 IC50= 0.27 ĂÂŒM and COX-2 IC50= 3.1 ĂÂŒM, selectivity index = 11.5), chemically and metabolically stable, and capable to cross Caco-2 cell monolayer, resembling BBB, probing that its transport is GLUT-1-mediated. Furthermore, Galmof0(3) powerfully inhibits PGE2release higher than mofezolac (1) in LPS-stimulated mouse BV2 microglial cell line, a worldwide recognized neuroinflammation model. In addition, Fingerprints for Ligands and Proteins (FLAP) was used to explain the different binding interactions of Galmofs with the COX-1 active site
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
- âŠ