11,569 research outputs found

    Simulation of instability at transition energy with a new impedance model for CERN PS

    Get PDF
    Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neutron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated measurement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitudinal emittances and beam intensities were studied

    Two proposals for testing quantum contextuality of continuous-variable states

    Full text link
    We investigate the violation of non-contextuality by a class of continuous variable states, including variations of entangled coherent states (ECS's) and a two-mode continuous superposition of coherent states. We generalise the Kochen-Specker (KS) inequality discussed in A. Cabello, Phys. Rev. Lett. {\bf 101}, 210401 (2008) by using effective bidimensional observables implemented through physical operations acting on continuous variable states, in a way similar to an approach to the falsification of Bell-CHSH inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudo-spin observables and a generalized quasi-probability function.Comment: 7 pages, 2 figures, RevTeX

    Unidirectional and diffractionless surface plasmon-polaritons on three-dimensional nonreciprocal plasmonic platforms

    Get PDF
    Light-matter interactions in conventional nanophotonic structures typically lack directionality. Furthermore, surface waves supported by conventional material substrates do not usually have a preferential direction of propagation, and their wavefront tends to spread as it propagates along the surface, unless the surface or the excitation are properly engineered and structured. In this article, we theoretically demonstrate the possibility of realizing \emph{unidirectional and diffractionless surface-plasmon-polariton modes} on a nonreciprocal platform, namely, a gyrotropic magnetized plasma. Based on a rigorous Green function approach, we provide a comprehensive and systematic analysis of all the available physical mechanisms that may bestow the system with directionality, both in the sense of one-way excitation of surface waves, and in the sense of directive diffractionless propagation along the surface. The considered mechanisms include (i) the effect of strong and weak forms of nonreciprocity, (ii) the elliptic-like or hyperbolic-like topology of the modal dispersion surfaces, and (iii) the source polarization state, with the associated possibility of chiral surface-wave excitation governed by angular-momentum matching. We find that three-dimensional gyrotropic plasmonic platforms support a previously-unnoticed wave-propagation regime that exhibit several of these physical mechanisms simultaneously, allowing us to theoretically demonstrate, for the first time, unidirectional surface-plasmon-polariton modes that propagate as a single ultra-narrow diffractionless beam. We also assess the impact of dissipation and nonlocal effects. Our theoretical findings may enable a new generation of plasmonic structures and devices with highly directional response

    The Average Kinetic Energy of the Superconducting State

    Full text link
    Isothermal magnetization curves are plotted as the magnetization times the magnetic induction, 4πMB4 \pi M \cdot B, versus the applied field, H. We show here that this new curve is the average kinetic energy of the superconducting state versus the applied field, for type-II superconductors with a high Ginzburg-Landau parameter κ\kappa. The maximum of 4πMB4 \pi M \cdot B occurs at a field, HH^{*}, directly related to the upper critical field, Hc2H_{c2}, suggesting that Hc2(T)H_{c2}(T) may be extracted from such plots even in cases when it is too high for direct measurement. We obtain these plots both theoretically, from the Ginzburg-Landau theory, and experimentally, using a Niobium sample with Tc=8.5KT_c = 8.5 K, and compare them.Comment: 11 pages, 9 postscript figure

    Conformity and controversies in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature

    Get PDF
    Diagnostic methods used in the initial and post-treatment evaluation of canine lymphoma are heterogeneous and can vary within countries and institutions. Accurate reporting of clinical stage and response assessment is crucial in determining the treatment efficacy and predicting prognosis. This study comprises a systematic review of all available canine multicentric lymphoma studies published over 15 years. Data concerning diagnosis, clinical stage evaluation and response assessment procedures were extracted and compared. Sixty-three studies met the eligibility criteria. Fifty-five (87.3%) studies were non-randomized prospective or retrospective studies. The survey results also expose variations in diagnostic criteria and treatment response assessment in canine multicentric lymphoma. Variations in staging procedures performed and recorded led to an unquantifiable heterogeneity among patients in and between studies, making it difficult to compare treatment efficacies. Awareness of this inconsistency of procedure and reporting may help in the design of future clinical trials

    The Internal Ultraviolet-to-Optical Color Dispersion: Quantifying the Morphological K-Correction

    Full text link
    We present a quantitative measure of the internal color dispersion within galaxies, which quantifies differences in morphology as a function of wavelength. We apply this statistic to a local galaxy sample with archival images at 1500 and 2500 Angstroms from the Ultraviolet Imaging Telescope, and ground-based B-band observations to investigate how the color dispersion relates to global galaxy properties. The intenal color dispersion generally correlates with transformations in galaxy morphology as a function of wavelength, i.e., it quantifies the morphological K-correction. Mid-type spiral galaxies exhibit the highest dispersion in their internal colors, which stems from differences in the bulge, disk, and spiral-arm components. Irregulars and late-type spirals show moderate internal color dispersion, which implies that young stars generally dominate the colors. Ellipticals, lenticulars, and early-type spirals generally have low or negligible internal color dispersion, which indicates that the stars contributing to the UV-to-optical emission have a very homogeneous distribution. We discuss the application of the internal color dispersion to high-redshift galaxies in deep, Hubble Space Telescope images. By simulating local galaxies at cosmological distances, many of the galaxies have luminosities that are sufficiently bright at rest--frame optical wavelengths to be detected within the limits of the currently deepest near-infrared surveys even with no evolution. Under assumptions that the luminosity and color evolution of the local galaxies conform with the measured values of high-redshift objects, we show that galaxies' intrinsic internal color dispersion remains measurable out to z ~ 3.Comment: Accepted for publication in the Astrophysical Journal. 41 pages, 13 figures (3 color). Full resolution version (~8 Mb) available at http://mips.as.arizona.edu/~papovich/papovich_astroph.p

    Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors - disk and sphere

    Full text link
    The vortex state of mesoscopic three-dimensional superconductors is determined using a minimization procedure of the Ginzburg-Landau free energy. We obtain the vortex pattern for a mesoscopic superconducting sphere and find that vortex lines are naturally bent and are closest to each other at the equatorial plane. For a superconducting disk with finite height, and under an applied magnetic field perpendicular to its major surface, we find that our method gives results consistent with previous calculations. The matching fields, the magnetization and Hc3H_{c3}, are obtained for models that differ according to their boundary properties. A change of the Ginzburg-Landau parameters near the surface can substantially enhance Hc3H_{c3} as shown here.Comment: 7 pages, 4 figures (low resolution
    corecore