96 research outputs found
Pulse Propagation through Different Materials User-Friendly Simulation Software
High-intensity ultrashort laser pulses are affected by many different effects pass-ing through materials. There is often a need to estimate these effects, especially the impact on the pulse duration and the spectrum. This estimation is not a trivial problem and needs to be simulated numerically. In this report a user-friendly simulation program that simulates the propagation of pulses through several different materials is presented
Phase metrology with multi-cycle two-colour pulses
Strong-field phenomena driven by an intense infrared (IR) laser depend on
during what part of the field cycle they are initiated. By changing the
sub-cycle character of the laser electric field it is possible to control such
phenomena. For long pulses, sub-cycle shaping of the field can be done by
adding a relatively weak, second harmonic of the driving field to the pulse.
Through constructive and destructive interference, the combination of strong
and weak fields can be used to change the probability of a strong-field process
being initiated at any given part of the cycle. In order to control sub-cycle
phenomena with optimal accuracy, it is necessary to know the phase difference
of the strong and the weak fields precisely. If the weaker field is an even
harmonic of the driving field, electrons ionized by the field will be
asymmetrically distributed between the positive and negative directions of the
combined fields. Information about the asymmetry can yield information about
the phase difference. A technique to measure asymmetry for few-cycle pulses,
called Stereo-ATI (Above Threshold Ionization), has been developed by [Paulus G
G, et al 2003 Phys. Rev. Lett. 91]. This paper outlines an extension of this
method to measure the phase difference between a strong IR and its second
harmonic
Accessing properties of electron wave packets generated by attosecond pulse trains through time-dependent calculations
We present a time-dependent method for calculating the energy-dependent atomic dipole phase that an electron acquires when it is ionized by the absorption of a single ultraviolet photon. Our approach exactly mirrors the method used to experimentally characterize a train of attosecond pulses. In both methods the total electron phase is measured (calculated) via a two-photon interference involving the absorption or emission of an additional infrared photon in the continuum. In our calculation we use a perfect (zero spectral phase) light field and so extract the atomic dipole phase directly from the electron wave packet. We calculate the atomic phase for argon, neon, and helium at low infrared intensities and compare them to previous perturbative calculations. At moderate infrared probe intensities, we find that that the dipole phase can still be reliably determined using two-photon interference, even when higher-order processes are non-negligible. We also show that a continuum structure, in this case a Cooper minimum in argon, significantly affects the probability for infrared absorption and emission over a range of energies around the minimum, even at low infrared intensities. We conclude that well-characterized attosecond pulse trains can be used to examine continuum structures in atoms and molecules. © 2005 The American Physical Society
Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths
We image the field enhancement at Ag nanostructures using femtosecond laser
pulses with a center wavelength of 1.55 micrometer. Imaging is based on
non-linear photoemission observed in a photoemission electron microscope
(PEEM). The images are directly compared to ultra violet PEEM and scanning
electron microscopy (SEM) imaging of the same structures. Further, we have
carried out atomic scale scanning tunneling microscopy (STM) on the same type
of Ag nanostructures and on the Au substrate. Measuring the photoelectron
spectrum from individual Ag particles shows a larger contribution from higher
order photoemission process above the work function threshold than would be
predicted by a fully perturbative model, consistent with recent results using
shorter wavelengths. Investigating a wide selection of both Ag nanoparticles
and nanowires, field enhancement is observed from 30% of the Ag nanoparticles
and from none of the nanowires. No laser-induced damage is observed of the
nanostructures neither during the PEEM experiments nor in subsequent SEM
analysis. By direct comparison of SEM and PEEM images of the same
nanostructures, we can conclude that the field enhancement is independent of
the average nanostructure size and shape. Instead, we propose that the
variations in observed field enhancement could originate from the wedge
interface between the substrate and particles electrically connected to the
substrate
Ponderomotive shearing for spectral interferometry of extreme-ultraviolet pulses
We propose a novel method for completely characterizing ultrashort pulses at extreme-ultraviolet (XUV) wavelengths by adapting the technique of spectral phase interferometry for direct electric-field reconstruction to this spectral region. Two-electron wave packets are coherently produced by photoionizing atoms with two time-delayed replicas of the XUV pulse. For one of the XUV pulses, photoionization occurs in the presence of a strong infrared pulse that ponderomotively shifts the binding energy, thereby providing the spectral shear needed for reconstruction of the spectral phase of the XUV pulse. (C) 2003 Optical Society of America
High-order harmonic generation using a high-repetition-rate turnkey laser
We generate high-order harmonics at high pulse repetition rates using a
turnkey laser. High-order harmonics at 400 kHz are observed when argon is used
as target gas. In neon we achieve generation of photons with energies exceeding
90 eV (13 nm) at 20 kHz. We measure a photon flux of 4.4
photons per second per harmonic in argon at 100 kHz. Many experiments employing
high-order harmonics would benefit from higher repetition rates, and the
user-friendly operation opens up for applications of coherent extreme
ultra-violet pulses in new research areas
Ponderomotive shearing for spectral interferometry of extreme-ultraviolet pulses
We propose a novel method for completely characterizing ultrashort pulses at extreme-ultraviolet (XUV) wavelengths by adapting the technique of spectral phase interferometry for direct electric-field reconstruction to this spectral region. Two-electron wave packets are coherently produced by photoionizing atoms with two time-delayed replicas of the XUV pulse. For one of the XUV pulses, photoionization occurs in the presence of a strong infrared pulse that ponderomotively shifts the binding energy, thereby providing the spectral shear needed for reconstruction of the spectral phase of the XUV pulse. © 2003 Optical Society of America
Spatial control of extreme ultraviolet light with opto-optical phase modulation
Extreme-ultraviolet (XUV) light is notoriously difficult to control due to
its strong interaction cross-section with media. We demonstrate a method to
overcome this problem by using Opto-Optical Modulation guided by a geometrical
model to shape XUV light. A bell-shaped infrared light pulse is shown to
imprint a trace of its intensity profile onto the XUV light in the far-field,
such that a change in the intensity profile of the infrared pulse leads to a
change in the shape of the far-field XUV light. The geometrical model assists
the user in predicting the effect of a specific intensity profile of the
infrared pulse, thus enabling a deterministic process
Macroscopic effects in noncollinear high-order harmonic generation.
We study two-color high-order harmonic generation using an intense driving field and its weak second harmonic, crossed under a small angle in the focus. Employing sum- and difference-frequency generation processes, such a noncollinear scheme can be used to measure and control macroscopic phase matching effects by utilizing a geometrical phase mismatch component, which depends on the noncollinear angle. We further show how spatial phase effects in the generation volume are mapped out into the far field allowing a direct analogy with temporal carrier envelope effects in attosecond pulse generation
- …