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Abstract 

High-intensity ultrashort laser pulses are affected by many different effects pass
ing through materials. There is often a need to estimate these effects, especially 
the impact on the pulse duration and the spectrum. This estimation is not a 
trivial problem and needs to be simulated numerically. In this report a user
friendly simulation program that simulates the propagation of pulses through 
several different materials is presented. 
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1 Introduction 

The rapid development within the field of lasers has resulted in shorter and 
shorter laser pulses with an increasing peak power. Such ultrashort and high 
power pulses will be affected in different ways when passing through materials. 
In many experimental set-ups the pulses pass through at least one, some times 
several, optical component(s) such as windows, lenses etc. It is often of cru
cial importance to know the pulse duration at the site of the interaction, but 
not possible to measure it there. In these cases there is a need for calculat
ing/estimating the pulse duration knowing the input pulse parameters and the 
design of the set-up. Normally, a rough estimate is done taking only dispersion 
into account. For an ultrashort, high power laser pulse this estimate is not 
sufficient. At least the combined effect of group velocity dispersion (GVD) and 
self phase modulation (SPM) has to be accounted for. For extremely short or 
very high power pulses, higher order effects must be taken into account as well. 

A simulation program that takes most of the effects into account has been 
developed. The simulations in the program are based on the theory derived in 
ref [1] using the numerical method called split step Fourier method explained 
in the same reference. A short summary of the theory of pulse propagation and 
the numerical method is given in appendices A and B. 

2 Short about propagation in different materials 

The effects on the laser pulses propagating through a material are mainly due 
to two different phenomena: 

• a short pulse consists of many frequencies that are affected differently by 
the material 

• the high intensity will change the refractive index. 

The refractive index in a material depends on the frequency. A short pulse 
consists of many different frequencies and will therefore be affected by different 
refractive index. The speed with which the pulse propagates in the material is 
called the group velocity and given by: 

Vg = (~;) -
f3-f3o 

(1) 

Where /3 is the wave number and ;30 is the central wave number. The refractive 
index (and the wave number since f3 = 211"~(>.)) does not change linearly with 
frequency and different frequencies will therefore have different group velocities. 
This is known as group velocity dispersion, GVD and will stretch the pulse as it 
propagates through the material. In ordinary materials the low frequency com
ponents travel faster than the high frequency components resulting in a linear 
change of frequency across the pulse. A frequency change across the pulse is 
known as a chirp. For very short pulses with very broad spectra even higher 
order contributions become significant and can no longer be neglected. 
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The refractive index of the material also depends on the intensity of the pulses 
according to: 

n(t) =no+nzi(t) (2) 

where nz is known as the non-linear refractive index. In most cases nz > 0 so 
that the refractive index increases with increasing intensity. Since the intensity 
of a laser pulse changes across the pulse, different parts will experience different 
refractive index. This effect is known as self phase modulation (SPM) an will 
affect the phase of the pulses according to 

¢ = Woi _ (3z = Woi _ W0 n0 Z _ W0 nzl (t) z. 
c c 

(3) 

Since the instantaneous frequency is given by the time derivative of the phase 
this too will depend on the intensity 

(4) 

Due to the time-dependent profile of the pulse new frequencies will be generated 
depending on the sign of the derivative. The leading edge of the pulse, where 
~i > 0, will be shifted to lower frequencies while the trailing edge will be shifted 
to higher frequencies. The central part remains unaffected since ~i ~ 0 here. 
The total effect is a broadening of the spectrum with a change in frequencies 
across the pulses from lower to higher frequencies. ~i does not change linearly 
across the pulse resulting in a non-linear chirp. 

In any material the two above mentioned effects will act simultaneously and 
the combined effect will be greater than the sum of the separate contributions. 
SPM will generate a broader spectrum and enhance the effect of GVD. In a 
normal material SPM will generate new low frequency components at the lead
ing edge that will travel faster than the rest of the pulse due to GVD (and 
vice versa for the trailing edge) and the temporal stretching of the pulse will 
therefore increase. 

3 The program and how to use it 

To be able to run the program Matlab (ver 5.3 or higher) has to be installed on 
the computer. The folder containing the program should be copied and added 
to the Matlab-path. To add a program to the Matlab-path use the File pop-up 
menu in the command window and choose set path. Then choose path, add 
to path and select the copied folder. To start the program type PropagatePulse 
in the command window and figure (1) will be displayed. 

First add the input parameters to the program: 

• Material. Choose a material in the list through which you would like to 
simulate the propagation? 

• Pressure. If the chosen material is a gas, what is the pressure? If the 
material is not a gas this parameter will not be used. 
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Figure 1: The program window as it looks when the program is first started. 

• Length. The distance the pulses will travel through the given material? 

• Energy. The energy per pulse? 

• T I fs. The time duration of the pulses (full width half maximum). 

• A I nm. The central wavelength of the pulses. 

• Radius. The radius of the beam (Intensityle2 ). 

• Number of steps. How many steps the calculations should take. Many 
steps makes it more accurate but it will take longer time, normally 20 
steps is a good number to use. 

If you would like to use a parameter not listed you can choose ' other material', 
but then you have to know the values of n2 , /32 and /h. After the parameters are 
inserted press the evaluate button and the program will calculate and display 
the parameters used in the simulation. Now you can choose if you would like 
the program to display the results in real- time (takes a little longer) or if you 
just want the final result. You can also tell the program to calculate the chirp, 
the result is not calibrated and will therefore only give the shape of the chirp. 

After this you press the run button and the simulation starts. When the sim
ulation is completed the pulse duration will be displayed in the box labelled 'T 

I fs'. The following data will be displayed in this manner: 
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• Figure PropagatePulse. The pulse shapes of the input and output pulses 
are displayed. 

• Figure Spec Freq. The input and output spectra as a function of frequency 
(relative intensity). 

• Figure Spec Lambda. The input and output spectra as a function of 
wavelength (relative intensity). 

• Figure Spec Lambda Norm. The input and output spectra as a function 
of wavelength, both normalized. 

• Figure Phase. The temporal phase of the pulse. 

• Figure Chirp. If you have chosen to calculate the chirp it will be displayed 
in this figure. 

If you after the simulation would like the output pulse to be input in a new 
simulation (for instance if the pulses pass two different windows) check the 'use 
previous pulse' check box, change the input parameters needed to match the 
new material, press evaluate and press run. This can be repeated as many 
times as you like. The program flow is depicted in figure 2. 
If the energy of the pulses is low enough (L N L > > L) the effect of SPM is 
insignificant and dispersion is the only pulse broadening effect that has to be 
taken into account. In this case there is an analytic solution to the problem that 
makes the calculation much faster. If you want to know the pulse duration for 
pulses only affected by GVD (no higher order dispersion), check the check-box 
labelled 'use GVD only' before clicking the evaluate button. 

3.1 Limitations 

To be able to simulate the pulse propagation some approximations are needed. 
This will limit the range of situations covered by the program. The design is 
such that it will optimize the performance if the pulses are from a Ti:Sapphire 
laser cantered around 800 nm with pulse duration of 30- 150 fs. 

• In the program the pulses are approximated with the envelope of the 
electric field. This approximation is valid as long as the pulse duration 
is much longer than the oscillation period of the electric field. For visible 
and near infrared light this corresponds to pulses longer than ~ 10 fs. The 
program cannot handle pulses shorter than this correctly. 

• The wavelength range covered by the program is approximately 400-1000 
nm. The lower limit depends on the absorption edge for the different 
materials. 

• The program is one-dimensional and does not take effects such as diffrac
tion and self-focusing into account. Different parts of a real pulse are 
affected differently passing through a material so that the pulse duration 
changes across the pulse. In the program the intensity used is the average 
intensity of the pulse and no spatial variations are included. 
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Figure 3: a) Temporal structure of the input (blue, solid line) and output (green, 
dashed line) pulses. b) Spectrum before and after propagation as function of 
angular frequency. c) Same as in b) but as a function of wavelength. d) Same 
as in c) but with both spectra normalized. e) The temporal phase. f) The chirp 
of the pulse. 
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Appendices 

A The propagation equation 

To study the behavior of light propagating in any material one have to study 
Maxwell's equations 

\lxE 
EJB 

(5) -at, 

\lxH 
EJD 

Jf +at' (6) 

V'·D Pf, (7) 

Y'·B 0. (8) 

The flux densities D and B is due to the medias response to E and H and can 
be rewritten as: 

D 

B 

(9) 

(10) 

for a non-magnetic media M = 0. Using equations (6), (9) and (10) equation 
(5) can be rewritten in the following way by taking the curl of equation (5): 

V'xV'xE = 

{M = 0} 

{Jf = 0} 

{~oEo = :2} 
and using the fact that 

\1 X \1 X E = \1 (\1 . E) - V2 E. 

In a media without charge density, P! = 0, (12) can be written as: 

\1 X \1 X E = -\12 E. 

resulting in 

(11) 

(12) 

(13) 

(14) 

This equation is known as the wave equation and to know the behavior of the 
light it has to be solved. This is, however, not an easy task. Fortunately 
some approximations are possible to make that simplifies matter. One such 
approximation is to only include the nonlinear effects governed by x(3), then 
the polarization can be written as: 

P (r, t) = h (r, t) + PNL (r, t), (15) 
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where PL is the linear part and PNL is the non-linear part. The wave equation 
can now be rewritten as: 

(16) 

The next approximation is to study the slowly varying amplitude of the envelope 
instead of the electric field. This approximation holds as long as the pulses are 
significantly longer then an optical cycle, i.e. pulses longer than around 10 fs 
if the wavelength is in the visible region [1]. If the slowly varying envelope is 
separated from the rapidly changing parts, the electric field and the polarization 
components can be written as: 

E (r, t) 

PL (r, t) 

PNL (r, t) 

~x [E (r, t) exp ( -iwot) + c.c.] , 

~x [PL (r, t) exp ( -iwot) + c.c.] , 

~x [PNL(r, t) exp ( -iw0 t) + c.c.], 

(17) 

(18) 

(19) 

where c.c. stands for complex conjugate. The non-linear part of the polarization 
is often small compared to the linear parts so that it can be considered as a 
perturbation. According to [1] it is possible to show that the refractive index is 
intensity dependent and can be written as: 

where the non-linear part, n 2 , can be shown to be [2] 

-~ (3) 
n2 - Sn Xxxxx· 

(20) 

(21) 

Another parameter that has to be part of the equation is the wave-number, 
(3 = 2"{. This parameter depends on the frequency and to simplify matter it is 
expanded in a Taylor series centered around the central frequency W 0 

1 2 1 
(3 (w) = f3o + (w- W 0 ) /31 + 2 (w- W 0 ) /32 + 6 (w- W 0 ) /33 + ... (22) 

where 

(23) 

After some manipulations the wave equation can be rewritten as: 

8A 8A i 82 A a . 2 oz +!317ft+ 2/32 8t2 + 2A = ZJ' IAI A, (24) 

where A is the slowly varying envelope of the pulse and /' is known as the 
nonlinearity coefficient and is defined as: 

(25) 

2 

and Aef 1 is given by 1rw2 if a capillary is studied but by "'~ in most other 
cases1. 

2 

1 The program uses Aef f = "'~ . 
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Since the program should be able to handle very short pulses some of the 
approximations made are not strictly valid and a few more terms are needed in 
the wave equation. When these terms are added, the frame of reference is also 
changed to a frame moving along with the pulse 

z 
T = t- - = t- f31z. (26) 

Vg 

This finally gives a wave-equation valid for pulses down to~ 10 fs, [1] 

8A a i 82 A 1 83 A . [ 2 2i 8 ( 2 ) 8IAI 2
] -+-A+-{32---{33-=Z"'( IAI A+-- IAI A -TRA-- 0 

8z 2 2 8T2 6 8T3 W 0 8T 8T 
(27) 

This equation is also known as the generalized nonlinear Schri:idinger equation. 
For inert gases the response time T R is very fast ( < 5 fs) and can therefore be 

neglected if the time duration of the laser pulses are much longer than this2 . The 
time scale and the slowly varying envelope can be normalized in the following 
way: 

T 
T 
To' 

(28) 

A (z, T) vPo exp (- ~z) U (z, T). (29) 

Using this and rearranging the terms in equation (27) results in: 

where: 

T2 
(31) Lv 0 

sgn ({32)' 

L' 
T3 

(32) 0 
D sgn ({33)' 

LNL 
1 

(33) 
"(Po' 

2 
(34) s = 

WoTo 

Equation (30) is the equation used in the program to simulate the pulse propa
gation. 

B Numerical model 

To study the behavior of the propagating pulses equation (30) has to be sim
ulated since it is not analytically solvable. The method used is known as the 
Split-step Fourier method [1]. 

2Even though the program is to be used for other materials than inert gases 
this term is excluded, since it in most cases has a minor effect on the pulses. It 
is however possible to add it to the program if that should be needed. 
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The idea behind the Split-step Fourier method is to treat the operators that 
accounts for the dispersion and absorption and the operators for the nonlinear
ities separately. Equation(27) can now be written as 

aA (~ ~) az = D+N A, (35) 

where: 

D 
i a2 1 a3 a 

-2{32 aT2 + rl3 aT3 - 2' (36) 

. [IAI 2 ..'!:!._ ~ (IAI 2 A) - T aiAI2
] 

Z"f + WoA aT R aT . 

If the two operators are treated as if they were independent equation (35) can 
be solved in two steps. The first step is to solve the equation if the nonlinearities 
acts alone, f5 = 0 and the second step is to solve the equation when dispersion 
acts alone, N = 0. The solution is then given by: 

A (z + h, T) ~ exp ( hD) exp ( hN) A (z, T). (37) 

The exponential operator exp ( hD) is calculated in the Fourier domain: 

exp ( hD) B (z, T) = { F-1 exp [hf5 (iw)] F} B (z, T), (38) 

f5 (iw) is obtained by replacing all the 8~ by iw in (36) 

~. i 2 i 3 a 
D (zw) = 2,{32w - "6{33w - 2. (39) 

It can be shown that this method is accurate to the second order in the step 
size h. To improve the method it has to be taken into account that N varies 
across h, until now we have just added the nonlinearities at the boundaries of 
each section, one way to do this is to rewrite equation (37) as: 

A (z + h, T) ~ exp ( ~jj) exp (1z+h N (z') dz') exp ( ~jj) A (z, T). (40) 

This is called the symmetrized split-step Fourier method. The integral accounts 
for the z-dependence of the nonlinearities. It can be shown that this method is 
accurate to the third order of the step size h. This expression is however more 
complicated to calculate, even if we use a very rough estimate of the integral 
(the trapezoidal rule) 

r+h h Jz N(z')dz'~2, [N(z)+N(z+h)], (41) 

we end up with an expression that we have to iterate. However, since the 
accuracy is higher we can use bigger steps, h, and gain time anyhow. The 
method can be visualized in the following way: think of the media, in which the 
pulse propagates, as divided in equispaced segments (separated by h). The pulse 
propagates the distance h/2 only effected by dispersion, then it's multiplied with 
a term that represents the nonlinear effect over the entire segment and after that 
it propagates the remaining h/2 only effected by dispersion. 

In the program the symmetrized split-step Fourier method is used to simulate 
the propagation. 
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C The refractive index 

For most solid materials the Sellmeir equation has been used to calculate the 
dispersion. The equation used is: 

( 42) 

En and Cn are constants for the different materials. 
For the gases the following formula has been used instead: 

2 ( k2 k3 k4 k5 k6 ) 
n = 1 + k1 1 + >,2 + >,4 + ),6 + >,8 + .),10 + ... ( 43) 

kn are constants for the different materials. 
The refractive index is also intensity dependent, that is, very high intensities 

will change the refractive index according to 

(44) 

where n0 is the refractive index for low intensities, I is the intensity and n2 is 
called the nonlinear refractive index. There is a relation between the nonlinear 
refractive index and the nonlinear susceptibility, x(3l, [2] given by 

(45) 

The intensity dependance of the refractive index is what causes effects like 
SPM and self focusing to occur. 

C.l Material parameters 

C.l.l Refractive index for different materials 

Material constants for material calculated using 

n2 _ 1 + BtA2 + B2A2 + ~ [.\] = um 
- ~-~ ~-~ ~-~' ~ 

Material B1 B2 B3 c1 c2 c3 
Air 5.7378•10 

-4 
0.0059526 

BK7 1.03961212 0.231792344 1.01046940 0.00600069867 0.0200179144 103.560653 

Fused Silica 0.6961663 0.4079426 0.8974794 0.00467914826 0.0135120631 97.9340025 

LiF 0.61388327 0.30609975 0.00274702 0.00775673 0.00113901 2.88235102 

MgF2 eo 0.01173533 0.90388658 0.00502180 0.016499869 0.005374722 3.823524155 

MgF2 oo 0.01937139 0.86427500 0.00432548 0.011587826 0.005202665 3.729621083 

Sapphire eo 1.50397590 0.550691410 6.59273790 0.00548041129 0.0147994281 402.895140 

Sapphire oo 1.43134930 0.650547130 5.34140210 0.00527992610 0.0142382647 325.017834 

SFll 1. 73848403 0.311168974 1.17490871 0.0136068604 0.0615960463 121.922711 

2 A B D),2 
n = + ),2-C + ;,2-E' [.\] = !Jffi 

14 

Ref 

[3] 
[3] 
[4] 
[3] 
[3] 
[3] 
[3] 
[5] 



Material A B c D E Ref 
KDP oo 2.2576 0.0101 0.0142 1. 7623 57.8984 [6] 
KDP eo 2.1295 0.0097 0.0014 0. 7580 127.0535 [6] 
DKDP oo 2.2409 0.0097 0.0156 2.2470 126.9205 [6] 
DKDP eo 2.1260 0.0086 0.0120 0. 7844 123.4032 [6] 

2 - 1 + k ( 1 + k2 + & + k4 + B._ + & + ) n - 1 >,2 >,4 >,6 >,8 >,1o •·· , [.\] = 

Material k1 k2 k3 k4 k5 k6 Ref 
He 6.927'10 

-5 
2.24'105 5.94"10 10 1.72"1o16 [7] 

Ne -4 5 10 16 [7] 1.335'10 2.24'10 8.09'10 3.56'10 

Ar -4 5 11 
4.09"10 17 4.32"10 23 [7] 5.547'10 5.15'10 4.19'10 

Kr -4 
6.70"105 8.84"10 11 1.49"1018 2.74"1024 30 [7] 8.377'10 5.10'10 

Xe 1.366'10 
-3 5 12 

4.89"1o18 25 
4.34"1o31 [7] 9.02'10 1.81'10 1.45"10 

C.1.2 The nonlinear refractive index 

Material n2 (1o-20m2 /W) Reference 
MgF2 1.15 ± 0.20 [8] 
Suprasil 2.82 ± 0.30 [8] 
Si02 2.88 [9] 
Sap hire 3.2 [10] 
Herasil 3.21 [8] 
BBO 3.4 [10] 
BK7 3.75 [8] 
Ruby 4.15 [8] 
Water 5.7 [8] 
Methanol 6.7 [8] 
CCl4 19 [8] 
KTP 23.4 [10] 
Benzene 24 [8] 
cs2 150 [8] 

Gas n2 (10-23m2 /W) Reference 
Ar 0.980 [11] 
Ne 0.1 [10] 
H2 1.11 [11] 
Kr 2.8 [10] 
N2 4.52 [11] 
Air 5.57 [11] 
Xe 8.1 [10] 
02 9.68 [11] 
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