43 research outputs found

    Bond disproportionation and dynamical charge fluctuations in the perovskite rare earth nickelates

    Full text link
    We present a theory describing the local electronic properties of the perovskite rare earth nickelates--materials which have negative charge transfer energies, strong O 2p2p -- Ni 3d3d covalence, and breathing mode lattice distortions at the origin of highly studied metal-insulator and antiferromagnetic ordering transitions. Utilizing a full orbital, full correlation double cluster approach, we find strong charge fluctuations in agreement with a bond disproportionation interpretation. The unique double cluster formulation permits the inclusion of necessary orbital degeneracies and Coulomb interactions to calculate resonant x-ray spectral responses, with which we find excellent agreement with well-established experimental results. This previously absent, crucial link between theory and experiment provides validation of the recently proposed bond disproportionation theory, and provides an analysis methodology for spectroscopic studies of engineered phases of nickelates and other high valence transition metal compounds

    SmO thin films: a flexible route to correlated flat bands with nontrivial topology

    Full text link
    Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4ff-5dd band inversion at the X point. The [001] surface Bloch spectral density reveals two weakly interacting Dirac cones that are quasi-degenerate at the M_bar-point and another single Dirac cone at the Gamma_bar-point. We also show that the topological non-triviality in SmO is very robust and prevails for a wide range of lattice parameters, making it an ideal candidate to investigate topological nontrivial correlated flat bands in thin-film form. Moreover, the electron filling is tunable by strain. In addition, we find conditions for which the inversion is of the 4f-6s type, making SmO to be a rather unique system. The similarities of the crystal symmetry and the lattice constant of SmO to the well studied ferromagnetic semiconductor EuO, makes SmO/EuO thin film interfaces an excellent contender towards realizing the quantum anomalous Hall effect in a strongly correlated electron system.Comment: Paper+supplemen

    Microscopic origin of spin-orbital separation in Sr2CuO3

    Full text link
    Recently performed resonant inelastic x-ray scattering experiment (RIXS) at the copper L3 edge in the quasi-1D Mott insulator Sr2CuO3 has revealed a significant dispersion of a single orbital excitation (orbiton). This large and unexpected orbiton dispersion has been explained using the concept of spin-orbital fractionalization in which orbiton, which is intrinsically coupled to the spinon in this material, liberates itself from the spinon due to the strictly 1D nature of its motion. Here we investigate this mechanism in detail by: (i) deriving the microscopic spin-orbital superexchange model from the charge transfer model for the CuO3 chains in Sr2CuO3, (ii) mapping the orbiton motion in the obtained spin-orbital model into a problem of a single hole moving in an effective half-filled antiferromagnetic chain t-J model, and (iii) solving the latter model using the exact diagonalization and obtaining the orbiton spectral function. Finally, the RIXS cross section is calculated based on the obtained orbiton spectral function and compared with the RIXS experiment.Comment: 23 pages, 13 figures; v3 = style and structure improve

    Novel magnetic excitations beyond the single- and double-magnons

    Full text link
    Conventional wisdom suggests that one photon that carries one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (delta Ms = +-1) at most. This would imply that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Here we examine the fundamental limit of the photon-driven transport of angular momentum by studying the magnon spectrum of {\alpha}-Fe2O3 using resonant inelastic x-ray scattering. We discovered a cascade of higher-rank magnons carrying double, triple, quadruple, and quintuple the spin angular momentum of a single-magnon. Guided by theoretical calculations, we reveal how a two-photons scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.Comment: Work presented as an invited talk by Hebatalla Elnaggar at the IXS conference 2021 https://www.bnl.gov/rixsrexs2021

    Detection of metastable electronic states by Penning trap mass spectrometry

    Full text link
    State-of-the-art optical clocks achieve fractional precisions of 10−1810^{-18} and below using ensembles of atoms in optical lattices or individual ions in radio-frequency traps. Promising candidates for novel clocks are highly charged ions (HCIs) and nuclear transitions, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range, now becoming accessible to frequency combs. However, insufficiently accurate atomic structure calculations still hinder the identification of suitable transitions in HCIs. Here, we report on the discovery of a long-lived metastable electronic state in a HCI by measuring the mass difference of the ground and the excited state in Re, the first non-destructive, direct determination of an electronic excitation energy. This result agrees with our advanced calculations, and we confirmed them with an Os ion with the same electronic configuration. We used the high-precision Penning-trap mass spectrometer PENTATRAP, unique in its synchronous use of five individual traps for simultaneous mass measurements. The cyclotron frequency ratio RR of the ion in the ground state to the metastable state could be determined to a precision of δR=1⋅10−11\delta R=1\cdot 10^{-11}, unprecedented in the heavy atom regime. With a lifetime of about 130 days, the potential soft x-ray frequency reference at ν=4.86⋅1016 Hz\nu=4.86\cdot 10^{16}\,\text{Hz} has a linewidth of only Δν≈5⋅10−8 Hz\Delta \nu\approx 5\cdot 10^{-8}\,\text{Hz}, and one of the highest electronic quality factor (Q=νΔν≈1024Q=\frac{\nu}{\Delta \nu}\approx 10^{24}) ever seen in an experiment. Our low uncertainty enables searching for more HCI soft x-ray clock transitions, needed for promising precision studies of fundamental physics in a thus far unexplored frontier
    corecore