44 research outputs found

    New Brunswick Statutes

    Get PDF

    The worldwide impact of telemedicine during COVID-19: current evidence and recommendations for the future.

    Get PDF
    During the COVID-19 pandemic, telemedicine has emerged worldwide as an indispensable resource to improve the surveillance of patients, curb the spread of disease, facilitate timely identification and management of ill people, but, most importantly, guarantee the continuity of care of frail patients with multiple chronic diseases. Although during COVID-19 telemedicine has thrived, and its adoption has moved forward in many countries, important gaps still remain. Major issues to be addressed to enable large scale implementation of telemedicine include: (1) establishing adequate policies to legislate telemedicine, license healthcare operators, protect patients' privacy, and implement reimbursement plans; (2) creating and disseminating practical guidelines for the routine clinical use of telemedicine in different contexts; (3) increasing in the level of integration of telemedicine with traditional healthcare services; (4) improving healthcare professionals' and patients' awareness of and willingness to use telemedicine; and (5) overcoming inequalities among countries and population subgroups due to technological, infrastructural, and economic barriers. If all these requirements are met in the near future, remote management of patients will become an indispensable resource for the healthcare systems worldwide and will ultimately improve the management of patients and the quality of care

    Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>® </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    EMG Driven Model of the Lumbar Spine during Flexion, Bending and Rotation Using Opensim

    No full text
    ISB 2013: XXIV Congress of the International Society of Biomechanics; XV Brazilian Congress of Biomechanics, Natal, Rio Grande do Norte, Brazil, 4-9 August 2013This study utilised the OpenSim platform to develop an EMG driven model of the lumbar spine by expanding an existing model and incorporating a plugin to represent intervertebral stiffness. Subject-specific kinematic data and surface EMG activity were recorded from 4 subjects during flexion and extension, lateral bending, and axial rotation. The model was used to predict muscle excitation patterns necessary to produce the recorded motions, and the patterns were compared with the recorded EMG data. The model was then driven with the recorded EMG data, and new excitation patterns were calculated for the deep muscles for which EMG data was not available. Simulations were conducted for intervertebral lumbar stiffness corresponding to preloading of 0N, 250N and 500N. The model-predicted excitation patterns were most comparable to recorded EMG data for the flexion and extension motions. Excitation levels predicted for all motions were sensitive to the applied preload. Although activation patterns remained similar, there was a substantial variation in model-predicted muscle excitation levels with change in intervertebral stiffness
    corecore