328 research outputs found

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Motivation and incentives of rural maternal and neonatal health care providers: a comparison of qualitative findings from Burkina Faso, Ghana and Tanzania.

    Get PDF
    In Burkina Faso, Ghana and Tanzania strong efforts are being made to improve the quality of maternal and neonatal health (MNH) care. However, progress is impeded by challenges, especially in the area of human resources. All three countries are striving not only to scale up the number of available health staff, but also to improve performance by raising skill levels and enhancing provider motivation. In-depth interviews were used to explore MNH provider views about motivation and incentives at primary care level in rural Burkina Faso, Ghana and Tanzania. Interviews were held with 25 MNH providers, 8 facility and district managers, and 2 policy-makers in each country. Across the three countries some differences were found in the reasons why people became health workers. Commitment to remaining a health worker was generally high. The readiness to remain at a rural facility was far less, although in all settings there were some providers that were willing to stay. In Burkina Faso it appeared to be particularly difficult to recruit female MNH providers to rural areas. There were indications that MNH providers in all the settings sometimes failed to treat their patients well. This was shown to be interlinked with differences in how the term 'motivation' was understood, and in the views held about remuneration and the status of rural health work. Job satisfaction was shown to be quite high, and was particularly linked to community appreciation. With some important exceptions, there was a strong level of agreement regarding the financial and non-financial incentives that were suggested by these providers, but there were clear country preferences as to whether incentives should be for individuals or teams. Understandings of the terms and concepts pertaining to motivation differed between the three countries. The findings from Burkina Faso underline the importance of gender-sensitive health workforce planning. The training that all levels of MNH providers receive in professional ethics, and the way this is reinforced in practice require closer attention. The differences in the findings across the three settings underscore the importance of in-depth country-level research to tailor the development of incentives schemes

    A Novel Tandem Mass Spectrometry Method for Rapid Confirmation of Medium- and Very Long-Chain acyl-CoA Dehydrogenase Deficiency in Newborns

    Get PDF
    BACKGROUND:Newborn screening for medium- and very long-chain acyl-CoA dehydrogenase (MCAD and VLCAD, respectively) deficiency, using acylcarnitine profiling with tandem mass spectrometry, has increased the number of patients with fatty acid oxidation disorders due to the identification of additional milder, and so far silent, phenotypes. However, especially for VLCADD, the acylcarnitine profile can not constitute the sole parameter in order to reliably confirm disease. Therefore, we developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method to rapidly determine both MCAD- and/or VLCAD-activity in human lymphocytes in order to confirm diagnosis. METHODOLOGY:LC-MS/MS was used to measure MCAD- or VLCAD-catalyzed production of enoyl-CoA and hydroxyacyl-CoA, in human lymphocytes. PRINCIPAL FINDINGS:VLCAD activity in controls was 6.95+/-0.42 mU/mg (range 1.95 to 11.91 mU/mg). Residual VLCAD activity of 4 patients with confirmed VLCAD-deficiency was between 0.3 and 1.1%. Heterozygous ACADVL mutation carriers showed residual VLCAD activities of 23.7 to 54.2%. MCAD activity in controls was 2.38+/-0.18 mU/mg. In total, 28 patients with suspected MCAD-deficiency were assayed. Nearly all patients with residual MCAD activities below 2.5% were homozygous 985A>G carriers. MCAD-deficient patients with one other than the 985A>G mutation had higher MCAD residual activities, ranging from 5.7 to 13.9%. All patients with the 199T>C mutation had residual activities above 10%. CONCLUSIONS:Our newly developed LC-MS/MS method is able to provide ample sensitivity to correctly and rapidly determine MCAD and VLCAD residual activity in human lymphocytes. Importantly, based on measured MCAD residual activities in correlation with genotype, new insights were obtained on the expected clinical phenotype

    Perfusion by Arterial Spin Labelling following Single Dose Tadalafil in Small Vessel Disease (PASTIS): study protocol for a randomized controlled trial

    Get PDF
    Background Cerebral small vessel disease is a common cause of vascular cognitive impairment in older people, with no licensed treatment. Cerebral blood flow is reduced in small vessel disease. Tadalafil is a widely prescribed phosphodiesterase-5 inhibitor that increases blood flow in other vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. Methods/design Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. Sample size: 54 participants are required to detect a 15% increase in cerebral blood flow in subcortical white matter (p < 0.05, 90% power). Primary outcomes are cerebral blood flow in subcortical white matter and deep grey nuclei. Secondary outcomes are cortical grey matter cerebral blood flow and performance on cognitive tests (reaction time, information processing speed, digit span forwards and backwards, semantic fluency). Discussion Recruitment started on 4th September 2015 and 36 participants have completed to date (19th April 2017). No serious adverse events have occurred. All participants have been recruited from one centre, St George’s University Hospitals NHS Foundation Trust. Trial registration European Union Clinical Trials Register: EudraCT number 2015-001235-20. Registered on 13 May 2015

    Human African Trypanosomiasis in South Sudan: How Can We Prevent a New Epidemic?

    Get PDF
    Human African trypanosomiasis (HAT) has been a major public health problem in South Sudan for the last century. Recurrent outbreaks with a repetitive pattern of responding-scaling down activities have been observed. Control measures for outbreak response were reduced when the prevalence decreased and/or socio-political crisis erupted, leading to a new increase in the number of cases. This paper aims to raise international awareness of the threat of another outbreak of sleeping sickness in South Sudan. It is a review of the available data, interventions over time, and current reports on the status of HAT in South Sudan. Since 2006, control interventions and treatments providing services for sleeping sickness have been reduced. Access to HAT diagnosis and treatment has been considerably diminished. The current status of control activities for HAT in South Sudan could lead to a new outbreak of the disease unless 1) the remaining competent personnel are used to train younger staff to resume surveillance and treatment in the centers where HAT activities have stopped, and 2) control of HAT continues to be given priority even when the number of cases has been substantially reduced. Failure to implement an effective and sustainable system for HAT control and surveillance will increase the risk of a new epidemic. That would cause considerable suffering for the affected population and would be an impediment to the socioeconomic development of South Sudan

    Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI(2)) analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs), which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4), responsible for cAMP hydrolysis. METHODS: Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12). Responses to platelet-derived growth factor-BB (5–10 ng/ml), serum, PGI(2 )analogues (cicaprost, iloprost) and PDE4 inhibitors (roflumilast, rolipram, cilomilast) were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation) and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) production. RESULTS: Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5) of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%), PDE2 (15.8 ± 3.4%) or PDE1 activity (14.5 ± 4.2%). Intracellular cAMP levels were increased by PGI(2 )analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition), rolipram (37 ± 6%) and cilomilast (30 ± 4%) and, in the presence of 5 nM cicaprost, these compounds exhibited EC(50 )values of 4.4 (2.6–6.1) nM (Mean and 95% confidence interval), 59 (36–83) nM and 97 (66–130) nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9) production and promoted the anti-proliferative effects of PGI(2 )analogues. The cAMP activators iloprost and forskolin also induced apoptosis, whereas roflumilast had no significant effect. CONCLUSION: PDE4 enzymes are expressed in distal human PASMCs and the effects of cAMP-stimulating agents on DNA synthesis, proliferation and MMP production is dependent, at least in part, on PDE4 activity. PDE4 inhibition may provide greater control of cAMP-mediated anti-proliferative effects in human PASMCs and therefore could prove useful as an additional therapy for pulmonary arterial hypertension

    Mediator of DNA Damage Checkpoint 1 (MDC1) Contributes to High NaCl-Induced Activation of the Osmoprotective Transcription Factor TonEBP/OREBP

    Get PDF
    Background: Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. Methodology: We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. Principal Findings: We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. Conclusions/Significance: MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of tha

    RNA Gain-of-Function in Spinocerebellar Ataxia Type 8

    Get PDF
    Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUGexp) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAGexp transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUGexp transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUGexp disorders. Moreover, our demonstration that relatively short CUGexp transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders

    High diversity of picornaviruses in rats from different continents revealed by deep sequencing

    Get PDF
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission
    corecore