57 research outputs found

    Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Get PDF
    The Fanconi Anemia (FA) pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs). The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA

    Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as <it>ATM </it>(Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity.</p> <p>Results</p> <p>Using a replication-free assay in <it>Xenopus </it>extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells.</p> <p>Conclusions</p> <p>These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds.</p

    BRCAness Profile of Sporadic Ovarian Cancer Predicts Disease Recurrence

    Get PDF
    BACKGROUND:The consequences of defective homologous recombination (HR) are not understood in sporadic ovarian cancer, nor have the potential role of HR proteins other than BRCA1 and BRCA2 been clearly defined. However, it is clear that defects in HR and other DNA repair pathways are important to the effectiveness of current therapies. We hypothesize that a subset of sporadic ovarian carcinomas may harbor anomalies in HR pathways, and that a BRCAness profile (defects in HR or other DNA repair pathways) could influence response rate and survival after treatment with platinum drugs. Clinical availability of a BRCAness profile in patients and/or tumors should improve treatment outcomes. OBJECTIVE:To define the BRCAness profile of sporadic ovarian carcinoma and determine whether BRCA1, PARP, FANCD2, PTEN, H2AX, ATM, and P53 protein expression correlates with response to treatment, disease recurrence, and recurrence-free survival. MATERIALS AND METHODS:Protein microarray analysis of ovarian cancer tissue was used to determine protein expression levels for defined DNA repair proteins. Correlation with clinical and pathologic parameters in 186 patients with advanced stage III-IV and grade 3 ovarian cancer was analyzed using Chi square, Kaplan-Meier method, Cox proportional hazard model, and cumulative incidence function. RESULTS:High PARP, FANCD2 and BRCA1 expressions were significantly correlated with each other; however, elevated p53 expression was associated only with high PARP and FANCD2. Of all patients, 9% recurred within the first year. Among early recurring patients, 41% had high levels of PARP, FANCD2 and P53, compared to 19.5% of patients without early recurrence (p = 0.04). Women with high levels of PARP, FANCD2 and/or P53 had first year cumulative cancer incidence of 17% compared with 7% for the other groups (P = 0.03). CONCLUSIONS:Patients with concomitantly high levels of PARP, FANCD2 and P53 protein expression are at increased risk of early ovarian cancer recurrence and platinum resistance

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics

    A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome

    Get PDF
    Bloom syndrome (BS) is a genetic disorder associated with dwarfism, immunodeficiency, reduced fertility, and an elevated risk of cancer. To investigate the mechanism of this disease, we isolated from human HeLa extracts three complexes containing the helicase defective in BS, BLM. Interestingly, one of the complexes, termed BRAFT, also contains five of the Fanconi anemia (FA) complementation group proteins (FA proteins). FA resembles BS in genomic instability and cancer predisposition, but most of its gene products have no known biochemical activity, and the molecular pathogenesis of the disease is poorly understood. BRAFT displays a DNA-unwinding activity, which requires the presence of BLM because complexes isolated from BLM-deficient cells lack such an activity. The complex also contains topoisomerase IIIα and replication protein A, proteins that are known to interact with BLM and could facilitate unwinding of DNA. We show that BLM complexes isolated from an FA cell line have a lower molecular mass. Our study provides the first biochemical characterization of a multiprotein FA complex and suggests a connection between the BLM and FA pathways of genomic maintenance. The findings that FA proteins are part of a DNA-unwinding complex imply that FA proteins may participate in DNA repair
    corecore