4 research outputs found

    Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions

    Get PDF
    We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.Comment: 67 pages, 6 figure

    A Matrix model for plane partitions

    Get PDF
    We construct a matrix model equivalent (exactly, not asymptotically), to the random plane partition model, with almost arbitrary boundary conditions. Equivalently, it is also a random matrix model for a TASEP-like process with arbitrary boundary conditions. Using the known solution of matrix models, this method allows to find the large size asymptotic expansion of plane partitions, to ALL orders. It also allows to describe several universal regimes.Comment: Latex, 41 figures. Misprints and corrections. Changing the term TASEP to self avoiding particle porces

    Lectures on on Black Holes, Topological Strings and Quantum Attractors (2.0)

    Full text link
    In these lecture notes, we review some recent developments on the relation between the macroscopic entropy of four-dimensional BPS black holes and the microscopic counting of states, beyond the thermodynamical, large charge limit. After a brief overview of charged black holes in supergravity and string theory, we give an extensive introduction to special and very special geometry, attractor flows and topological string theory, including holomorphic anomalies. We then expose the Ooguri-Strominger-Vafa (OSV) conjecture which relates microscopic degeneracies to the topological string amplitude, and review precision tests of this formula on ``small'' black holes. Finally, motivated by a holographic interpretation of the OSV conjecture, we give a systematic approach to the radial quantization of BPS black holes (i.e. quantum attractors). This suggests the existence of a one-parameter generalization of the topological string amplitude, and provides a general framework for constructing automorphic partition functions for black hole degeneracies in theories with sufficient degree of symmetry.Comment: 103 pages, 8 figures, 21 exercises, uses JHEP3.cls; v5: important upgrade, prepared for the proceedings of Frascati School on Attractor Mechanism; Sec 7 was largely rewritten to incorporate recent progress; more figures, more refs, and minor changes in abstract and introductio
    corecore