1,468 research outputs found

    The X-ray Variability of AGN and its Implications for Observations of Galaxy Clusters

    Get PDF
    The detection of new clusters of galaxies or the study of known clusters of galaxies in X-rays can be complicated by the presence of X-ray point sources, the majority of which will be active galactic nuclei (AGN). This can be addressed by combining observations from a high angular resolution observatory (such as Chandra) with deeper data from a more sensitive observatory that may not be able to resolve the AGN (like XMM). However, this approach is undermined if the AGN varies in flux between the epochs of the observations. To address this we measure the characteristic X-ray variability of serendipitously detected AGN in 70 pairs of Chandra observations, separated by intervals of between one month and thirteen years. After quality cuts, the full sample consists of 1511 sources, although the main analysis uses a subset of 416 sources selected on the geometric mean of their flux in the pairs of observations, which eliminates selection biases. We find a fractional variability that increases with increasing interval between observations, from about 0.25 for observations separated by tens of days up to about 0.45 for observations separated by ∌10\sim 10 years. As a rule of thumb, given the precise X-ray flux of a typical AGN at one epoch, its flux at a second epoch some years earlier or later can be predicted with a precision of about 60%60\% due to its variability (ignoring any statistical noise). This is larger than the characteristic variability of the population by a factor of 2\sqrt{2} due to the uncertainty on the mean flux of the AGN due to a single prior measurement. The precision can thus be improved with multiple prior flux measurements (reducing the 2\sqrt{2} factor), or by reducing the interval between observations to reduce the characteristic variability.Comment: 13 pages, 7 figures; accepted for publication in the Open Journal of Astrophysics; full data table included with source files; comments welcom

    The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0

    Full text link
    The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters observed with Chandra and/or XMM are used to investigate the evolution of the cluster scaling relations. The observed evolution of the L-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the universe at their redshift of observation. When the systematic effect of assuming isothermality on the derived masses of the high-redshift clusters is taken into account, the high-redshift M-T and Mgas-T relations are also consistent with self-similar evolution. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having formed at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high-redshift (B=3.29+/-0.38) is consistent with the local relation, and significantly steeper then the self-similar prediction of B=2. This suggests that the non-gravitational processes causing the steepening occurred at z>1 or in the early stages of the clusters' formation, prior to their observation. The properties of the intra-cluster medium at high-redshift are found to be similar to those in the local universe. The mean surface-brightness profile slope for the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200 are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the sample is 0.28+/-0.16 solar.Comment: 23 pages, 17 figures. Accepted for publication in MNRAS. Revised to match accepted version: reanalysed data with latest calibrations, several minor changes. Conclusions unchange

    The use of the X rays in the diagnosis of aneurisms of the thoracic aorta, dilatations of the aorta and mediastinal new growths

    Get PDF
    The material on which this thesis is based has all been got from the Royal Infirmary, Edinburgh. The cases have all been under the charge of Dr. Bramwell, and a large number of them have personally come under my own observation.The examination by means of the X rays has been made in the electrical department of the above institution by the medical staff in that department.The aim of this thesis is to show, by the illustration of the cases which have come under observation during the last 5 or 6 years, what results are obtained on X ray examination and what is its bearing upon the diagnosis of cases.First of all then we will describe briefly the technique of the operation entailed in making an examination

    Interconnected or disconnected? Promotion of mental health and prevention of mental disorder in the digital age

    Get PDF
    To date there have been few peer-reviewed studies on the feasibility, acceptability and effectiveness of digital technologies for mental health promotion and disorder prevention. Any evaluation of these evolving technologies is complicated by a lack of understanding about the specific risks and possible benefits of the many forms of internet use on mental health. To adequately meet the mental health needs of today's society, psychiatry must engage in rigorous assessment of the impact of digital technologies

    Images, structural properties and metal abundances of galaxy clusters observed with Chandra ACIS-I at 0.1<z<1.3

    Get PDF
    We have assembled a sample of 115 galaxy clusters at 0.1<z<1.3 with archived Chandra ACIS-I observations. We present X-ray images of the clusters and make available region files containing contours of the smoothed X-ray emission. The structural properties of the clusters were investigated and we found a significant absence of relaxed clusters (as determined by centroid shift measurements) at z>0.5. The slope of the surface brightness profiles at large radii were steeper on average by 15% than the slope obtained by fitting a simple beta-model to the emission. This slope was also found to be correlated with cluster temperature, with some indication that the correlation is weaker for the clusters at z>0.5. We measured the mean metal abundance of the cluster gas as a function of redshift and found significant evolution, with the abundances dropping by 50% between z=0.1 and z~1. This evolution was still present (although less significant) when the cluster cores were excluded from the abundance measurements, indicating that the evolution is not solely due to the disappearance of relaxed, cool core clusters (which are known to have enhanced core metal abundances) from the population at z>0.5.Comment: 23 pages, 12 figures. Accepted for publication in ApJS. Updated to match published version. Redshifts of two clusters (RXJ1701 and CL0848) corrected and two observations of MACSJ0744.8 have been combined into one. Conclusions unchanged. A version with images of all of the clusters is available at http://hea-www.harvard.edu/~bmaughan/clusters.htm

    Wellbeing of children: Early Influences

    Get PDF

    The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    Full text link
    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95% level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42 erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.Comment: 13 pages, 12 figures, accepted for publication in MNRA

    Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    Get PDF
    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15≀\lez≀\le0.3 observed with ChandraChandra. We investigate the luminosity-mass (LMLM) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the LMLM relation, and find that the LMLM relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2±\pm0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the LMLM relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the YXY_{X} parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA

    Manufacture of cottage cheese from nonfat dry milk solids

    Get PDF
    Cover title

    An XMM and Chandra view of massive clusters of galaxies to z=1

    Full text link
    The X-ray properties of a sample of high redshift (z>0.6), massive clusters observed with XMM-Newton and Chandra are described, including two exceptional systems. One, at z=0.89, has an X-ray temperature of T=11.5 (+1.1, -0.9) keV (the highest temperature of any cluster known at z>0.6), an estimated mass of (1.4+/-0.2)x10^15 solar masses and appears relaxed. The other, at z=0.83, has at least three sub-clumps, probably in the process of merging, and may also show signs of faint filamentary structure at large radii,observed in X-rays. In general there is a mix of X-ray morphologies, from those clusters which appear relaxed and containing little substructure to some highly non-virialized and probably merging systems. The X-ray gas metallicities and gas mass fractions of the relaxed systems are similar to those of low redshift clusters of the same temperature, suggesting that the gas was in place, and containing its metals, by z=0.8. The evolution of the mass-temperature relation may be consistent with no evolution or with the ``late formation'' assumption. The effect of point source contamination in the ROSAT survey from which these clusters were selected is estimated, and the implications for the ROSAT X-ray luminosity function discussed.Comment: 9 pages, in Carnegie Observatories Astrophysics Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, and A. Oemler. See http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html for a full-resolution versio
    • 

    corecore