11 research outputs found

    PLoS One

    Get PDF
    Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Complete deficiency of the low-density lipoprotein receptor is associated with increased apolipoprotein B-100 production

    No full text
    We addressed the role of the low-density lipoprotein (LDL) receptor in determining clearance rates and production rate (PR) of apolipoprotein B (apoB) in humans. Kinetic studies using endogenous labeling of apoB with deuterated leucine were performed in 7 genetically defined patients with homozygous familial hypercholesterolemia (FH) and compared with 4 controls. The fractional catabolic rates (FCR) and PRs for apoB were determined by multicompartmental modeling. The FCRs of very-low-density lipoprotein 1 (VLDL1), VLDL2, intermediate-density lipoprotein (IDL), and LDL apoB were lower in FH than in controls, with the LDL apoB FCR being significantly lower (0.148+/-0.049 versus 0.499+/-0.099 pools x d(-1); P=0.008). Whereas receptor-defective FH patients had a total apoB PR similar to controls, receptor-null FH patients had a significantly greater total apoB PR than controls (35.97+/-10.51 versus 21.32+/-4.21 mg x kg(-1) x d(-1), respectively; P=0.02). This first study of apoB metabolism in homozygous FH using endogenous labeling with stable isotopes demonstrates that the LDL receptor contributes significantly to the clearance of LDL from plasma but plays a lesser role in the clearance of larger apoB-containing lipoproteins. Furthermore, these data also indicate that absence of a LDL receptor in humans substantially influences the apoB PR in viv

    Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP

    Get PDF
    The cholesteryl ester transfer protein (CETP) enables the transfer of cholesteryl ester (CE) from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the plasma compartment. CETP inhibition raises plasma levels of HDL cholesterol; a ternary tunnel complex with CETP bridging HDL and LDL was suggested as a mechanism. Here, we test whether the inhibition of CETP tunnel complex formation is a promising approach to suppress CE transfer from HDL to LDL, for potential treatment of cardio-vascular disease (CVD). Three monoclonal antibodies against different epitopes of CETP are assayed for their potential to interfere with CE transfer between HDL and/or LDL. Surprisingly, antibodies that target the tips of the elongated CETP molecule, interaction sites sterically required to form the suggested transfer complexes, do not interfere with CETP activity, but an antibody binding to the central region does. We show that CETP interacts with HDL, but not with LDL. Our findings demonstrate that a ternary tunnel complex is not the mechanistic prerequisite to transfer CE among lipoproteins

    Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP

    No full text
    The cholesteryl ester transfer protein (CETP) enables the transfer of cholesteryl ester (CE) from high density lipoproteins (HDL) to low-density lipoproteins (LDL) in the plasma compartment. CETP inhibition raises plasma levels of HDL cholesterol; a ternary tunnel complex with CETP bridging HDL and LDL was suggested as a mechanism. Here, we test whether the inhibition of CETP tunnel complex formation is a promising approach to suppress CE transfer from HDL to LDL, for potential treatment of cardio-vascular disease (CVD). Three monoclonal antibodies against different epitopes of CETP are assayed for their potential to interfere with CE transfer between HDL and/or LDL. Surprisingly, antibodies that target the tips of the elongated CETP molecule, interaction sites sterically required to form the suggested transfer complexes, do not interfere with CETP activity, but an antibody binding to the central region does. We show that CETP interacts with HDL, but not with LDL. Our findings demonstrate that a ternary tunnel complex is not the mechanistic prerequisite to transfer CE among lipoproteins. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

    Mediterranean Diet and Incidence of Advanced Age-Related Macular Degeneration: The EYE-RISK Consortium

    No full text
    Purpose: To investigate associations of adherence to the Mediterranean diet (MeDi) with incidence of advanced age-related macular degeneration (AMD; the symptomatic form of AMD) in 2 European population-based prospective cohorts. Design: Prospective cohort study of the Rotterdam Study I (RS-I) and the Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires (Alienor) Study populations. Participants: Four thousand four hundred forty-six participants 55 years of age or older from the RS-I (The Netherlands) and 550 French adults 73 years of age or older from the Alienor Study with complete ophthalmologic and dietary data were included in the present study. Methods: Examinations were performed approximately every 5 years over a 21-year period (1990–2011) in RS-I and every 2 years over a 4-year period (2006–2012) in the Alienor Study. Adherence to the MeDi was evaluated using a 9-component score based on intake of vegetables, fruits, legumes, cereals, fish, meat, dairy products, alcohol, and the monounsaturated-to-saturated fatty acids ratio. Associations of incidence of AMD with MeDi were estimated using multivariate Cox proportional hazard models. Main Outcomes Measures: Incidence of advanced AMD based on retinal fundus photographs. Results: Among the 4996 included participants, 155 demonstrated advanced incident AMD (117 from the RS-I and 38 from the Alienor Study). The mean follow-up time was 9.9 years (range, 0.6–21.7 years) in the RS-I and 4.1 years (range, 2.5–5.0 years) in the Alienor Study. Pooling data for both the RS-I and Alienor Study, participants with a high (range, 6–9) MeDi score showed a significantly reduced risk for incident advanced AMD compared with participants with a low (range, 0–3) MeDi score in the fully adjusted Cox model (hazard ratio, 0.59; 95% confidence interval, 0.37–0.95; P = 0.04 for trend). Conclusions: Pooling data from the RS-I and Alienor Study, higher adherence to the MeDi was associated with a 41% reduced risk of incident advanced AMD. These findings support the role of a diet rich in healthful nutrient-rich foods such as fruits, vegetables, legumes, and fish in the prevention of AMD
    corecore