10 research outputs found

    Ergänzungen zur iberischen Pseudoscorpioniden-Fauna

    Get PDF
    Die systematischen Aufsammlungen, die Prof. Dr. H. Franz in den letzten Jahren in weiten Teilen der iberischen Halbinsel durchführte, schliessen weitgehend die Lücken, die bisher noch zwischen den explorierten Gebieten klafften. Sie ergänzen und berichtigen daher unsere bisherigen, von mir letztmals 1955 (Eos, XXXI, pp. 87-122) zusammengefassten Kenntnisse in taxonomischer und faunistischer Hinsicht und runden das Faunenbild auch tiergeographisch zu erfreulicher Vollständigkeit ab. Die Ausbeuten enthielten wiederum 8 neue Arten beziehungsweise Unterarten. Drei weitere Arten waren für Spanien neu. In den cantabrischen Gebirgen tritt nunmehr die Gattung Microcreagris als charakteristisches Faunenelement noch stärker hervor.— Im folgenden werden die seither gemachten Funde angeführt.Peer reviewe

    Матеріально-технічне забезпечення розвитку соціальної сфери України в умовах трансформації економіки

    No full text
    У монографії розроблено теоретико-методологічні підходи до формування організаційно-економічного механізму матеріально-технічного забезпечення розвитку соціальної сфери держави. Розкрито суть матеріально-технічного забезпечення, роль у суспільному відтворенню, фактори та принципи формування та розвитку. Досліджено особливості, характер, трансформаційну динаміку та оцінено матеріально-технічне забезпечення соціальної сфери держави. Визначено механізми управління розвитком матеріально-технічного забезпечення. Запропоновано пріоритетні напрямки перспектив перетворень у матеріально-технічній базі соціальної сфери України в умовах переходу до сталого розвитку

    Additional file 3: Figure S2. of Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data

    No full text
    PCoA analysis of multiple tissue groups, related to Figs. 1, 2 and merging conditions section. Scatterplots of the first and second principal components from principal component analysis on all major tissue groups colored by sampled region. The grouping in these plots led us to either merge regions into a single group or to keep them separate. The final tissue set used for further analysis is summarized in Table 1. (PDF 73 kb

    Additional file 13: of Regulatory network changes between cell lines and their tissues of origin

    No full text
    Cell cycle genes regulation by SMAD5 in fibroblast and skin samples. (A) Spearman correlation between the log2 fold change in gene expression (fibroblast-vs-skin comparison) of KEGG cell cycle pathway genes and the differential targeting they receive by the TF SMAD5. Blue: evidence of SMAD5 ChIP-Seq binding, black: no evidence of SMAD5 binding. (B) Boxplot of Spearman correlation coefficients between SMAD5 expression levels and expression levels of all genes, and between SMAD5 expression levels and the expression levels of cell cycle target genes with SMAD5 ChIP-Seq binding evidence for fibroblast and skin samples. Significance is based on a Wilcoxon rank-sum test for fibroblast-vs-skin comparison. (PDF 79 kb

    Additional file 6: of Regulatory network changes between cell lines and their tissues of origin

    No full text
    Reconstruction and robustness of gene regulatory networks. (A) A cartoon of how the networks were generated. We used PANDA, a message-passing network inference algorithm that integrates multiple types of genomic data and infers the network of interactions between TFs and their target genes. PANDA uses a prior regulatory network inferred by mapping TF binding sites to the genome (motif data), integrates protein-protein interaction data and group-specific gene expression data to iteratively refine and deduce a final regulatory network. We generated one PANDA network for each group: LCL, whole blood, fibroblasts, and skin. The illustrations represent an example subnetwork with 5 TFs and 50 of its target genes. The strength of the inferred regulatory relationship is indicated by the edge thickness. Next, we did multiple random selections of 40 paired samples, and generated 100 networks for each group: LCL, blood, fibroblast, and skin. (B) Density plot of the standard deviation of the edge weights across the 100 bootstrapped networks in each group: LCL, blood, fibroblast, and skin. (C) Scatter plot of the average edge weights obtained from the bootstrapped networks and the edge weights from the network obtained using all the samples. (D) Scatter plot of the TF out-degree differences between the indicated cell line and tissue for the bootstrapped networks versus the network obtained using all the samples. (E) Scatter plot of the gene in-degree differences between the indicated cell line and tissue for the bootstrapped networks versus the network obtained using all the samples. (PDF 1025 kb

    Additional file 12: of Regulatory network changes between cell lines and their tissues of origin

    No full text
    Transcription factors differentially regulating genes in the cell cycle pathway in LCLs compared to blood. (A) Spearman correlation between the log2 fold change in gene expression (LCL-vs-blood comparison) of KEGG cell cycle pathway genes and the differential targeting they receive by the specified TF. Red: evidence of TF ChIP-Seq binding on the promoter of the gene, black: no evidence of TF binding. The negative correlation observed indicates the cell cycle genes are more highly expressed but less targeted by the TF in LCL compared to blood. (B) Boxplot of Spearman correlation coefficients between TF expression levels and expression levels of all genes, and between TF expression levels and the expression levels of cell cycle genes with TF ChIP-Seq binding evidence for LCL and blood samples. Significance is based on a Wilcoxon rank-sum test for LCL-vs-blood comparison. (PDF 213 kb

    Additional file 10: of Regulatory network changes between cell lines and their tissues of origin

    No full text
    Transcriptional targeting of genes in the pathways over-expressed for both cell lines. Boxplot of the gene in-degree differences for the genes in the specified pathway and for genes not in the pathway (*FDR < 0.05 t-test). Reduction of gene in-degree difference indicates that the genes in the pathway are less targeted by TFs in the cell line compared to its tissue of origin. (PDF 140 kb
    corecore