11 research outputs found

    Towards ASTEP+, a two-color photometric telescope at Dome C, Antarctica

    No full text
    International audienceDome C, Antarctica is unique in particular for long-duration astronomical observations due to the excellent weather conditions and nearly uninterrupted nights during the Southern winter period. The 40 cm telescope ASTEP has been operating successfully at the Concordia base, at Dome C, since 2010. We describe the new ASTEP+, a major upgrade of its camera box which will allow it to observe simultaneously in two colors. Approximately three times more photons will be collected for science, yielding more sensitive and accurate observations. The southern location of the telescope means that it is ideally located to follow-up exoplanetary targets in preparation for the future JWST and Ariel observations, in particular when located in the southern continuous viewing zones of these space-based telescopes

    Final results of the PERSEE experiment

    No full text
    International audienceThe PERSEE breadboard, developed by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS since 2005, is a nulling demonstrator that couples an infrared nulling interferometer with a formation flying simulator able to introduce realistic disturbances in the set-up. The general idea is to prove that an adequate optical design can considerably relax the constraints applying at the spacecrafts level of a future interferometric space mission like Darwin/TPF or one of its precursors. The breadboard is now fully operational and the measurements sequences are managed from a remote control room using automatic procedures. A set of excellent results were obtained in 2011. The measured polychromatic nulling depth with non polarized light is 8.8 10-6 stabilized at 9 10-8 in the 1.65-2.45 mum spectral band (37 % bandwidth) during 100 s. This result was extended to a 7h duration thanks to an automatic calibration process. The various contributors are identified and the nulling budget is now well mastered. We also proved that harmonic disturbances in the 1-100 Hz up to several ten's of nm rms can be very efficiently corrected by a Linear Quadratic Control (LQG) if a sufficient flux is available. These results are important contributions to the feasibility of a future space based nulling interferometer

    Building a GRAVITY+ Adaptive Optics Test Bench

    No full text
    International audienceWe present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench

    Building a GRAVITY+ Adaptive Optics Test Bench

    No full text
    International audienceWe present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench

    Building a GRAVITY+ Adaptive Optics Test Bench

    No full text
    International audienceWe present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench

    Building a GRAVITY+ Adaptive Optics Test Bench

    No full text
    International audienceWe present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench

    Building a GRAVITY+ Adaptive Optics Test Bench

    No full text
    International audienceWe present the testbench aimed at integrating the GRAVITY+ adaptive optics GPAO. It consists of two independent elements, one reproducing the Coudé focus of the telescope, including the telescope deformable mirror mount (with its surface facing down), and one reproducing the Coudé room opto-mechanical environment, including a downwards-propagating beam, and the telescope mechanical interfaces in order to fit in the new GPAO wavefront sensor. We discuss in this paper the design of this bench and the solutions we adopted to keep the cost low, keep the design compact (allowing it to be fully contained in a 20 sqm clean room), and align the bench independently from the adaptive optics. We also discuss the features we have set in this bench
    corecore