15 research outputs found

    Effect of ceritinib on the pharmacokinetics of coadministered CYP3A and 2C9 substrates:a phase I, multicenter, drug–drug interaction study in patients with ALK + advanced tumors

    No full text
    PURPOSE: Ceritinib is an ALK receptor tyrosine kinase inhibitor approved as first- and second-line treatment in adult patients with ALK + metastatic non-small cell lung cancer (NSCLC). The study investigated the drug-drug interaction (DDI) potential of ceritinib when coadministered with midazolam and warfarin as probe substrates for CYP3A and CYP2C9 activity, respectively. METHODS: This was a phase I, multicenter, open-label, single sequence, crossover DDI study in 33 adult patients with ALK + NSCLC or other advanced tumors. A single dose of a cocktail consisting of midazolam and warfarin was administered with and without concomitant administration of ceritinib. The primary objective was to evaluate the pharmacokinetics of midazolam and warfarin. Secondary objectives included pharmacokinetics, safety, tolerability, overall response rate (ORR), and duration of response (DOR) of ceritinib 750 mg once daily. RESULTS: Ceritinib inhibited CYP3A-mediated metabolism of midazolam, resulting in a markedly increased AUC (geometric mean ratio [90% confidence interval]) by 5.4-fold (4.6, 6.3). Ceritinib also led to an increase in the AUC of S-warfarin by 54% (36%, 75%). The pharmacokinetics and safety profile of ceritinib in this study are consistent with previous reports and no new safety signals were reported. Among the 19 patients with NSCLC, efficacy (ORR: 42.1% and DCR: 63.2%) was similar to that reported previously in studies of pretreated patients with ALK + NSCLC. CONCLUSION: Ceritinib is a strong CYP3A inhibitor and a weak CYP2C9 inhibitor. These findings should be reflected as actionable clinical recommendations in the prescribing information for ceritinib with regards to concomitant medications whose pharmacokinetics may be altered by ceritinib

    First-in-human phase 1 dose-escalation study of CAN04, a first-in-class interleukin-1 receptor accessory protein (IL1RAP) antibody in patients with solid tumours

    No full text
    Background: Interleukin-1 (IL-1) signalling is involved in various protumoural processes including proliferation, immune evasion, metastasis and chemoresistance. CAN04 is a first-in-class monoclonal antibody that binds IL-1 receptor accessory protein (IL1RAP), required for IL-1 signalling. In this first-in-human phase 1 study, we assessed safety, recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics and preliminary anti-tumour activity of CAN04 monotherapy. Methods: Patients with advanced solid tumours known to express IL1RAP and refractory to standard treatments were enrolled in a dose-escalation study with 5 dose levels (1.0–10.0 mg/kg) of weekly CAN04. Results: Twenty-two patients were enrolled. Most common adverse events were infusion-related reactions (41%), fatigue (32%), constipation (27%), diarrhoea (27%), decreased appetite (23%), nausea (23%) and vomiting (23%). One dose limiting toxicity was reported. No maximum tolerated dose was identified. Pharmacokinetics analyses indicate higher exposures and slower elimination with increasing doses. Decreases in serum IL-6 and CRP were observed in most patients. Twenty-one patients were evaluable for response, 43% had stable disease per immune-related response criteria with no partial/complete responses. Conclusions: The IL1RAP targeting antibody CAN04 can be safely administered to patients up to 10.0 mg/kg weekly, which was defined as the RP2D. Serum biomarkers supported target engagement and IL-1 pathway inhibition. Clinical trial registration: NCT03267316

    A Phase I Dose-Escalation Study of Antibody BI-505 in Relapsed/Refractory Multiple Myeloma

    No full text
    Purpose: This multicenter, first-in-human study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of BI-505, a human anti-ICAM-1 monoclonal antibody, in advanced relapsed/refractory multiple myeloma patients. Experimental design: BI-505 was given intravenously, every two weeks, at escalating doses from 0.0004 to 20 mg/kg, with extension of therapy until disease progression for responding or stable patients receiving 0.09 mg/kg or higher doses. Results: A total of 35 patients were enrolled. The most common adverse events were fatigue, pyrexia, headache, and nausea. Adverse events were generally mild to moderate and those attributed to study medication were mostly limited to the first dose, and manageable with premedication and slower infusion. No maximum tolerated dose was identified. BI-505's half-life increased with dose while clearance decreased, suggesting target-mediated clearance. The ICAM-1 epitopes on patient bone marrow myeloma were completely saturated at 10 mg/kg doses. Using the International Myeloma Working Group criteria, seven patients on extended therapy had stable disease for more than two months. Conclusion: BI-505 can be safely administered at doses that saturate myeloma cell ICAM-1 receptors in patients. This study was registered at www.clinicaltrials.gov (NCT01025206)

    Olaparib tablet formulation: effect of food on the pharmacokinetics after oral dosing in patients with advanced solid tumours

    No full text
    The oral PARP inhibitor olaparib has shown efficacy in patients with BRCA-mutated cancer. This Phase I, open-label, three-part study (Parts A-C) in patients with advanced solid tumours evaluated the effect of food on the pharmacokinetics (PK) of olaparib when administered in tablet formulation. PK data were obtained in Part A using a two-treatment period crossover design; single-dose olaparib 300 mg (two 150 mg tablets) was administered in two prandial states: fasted and fed. In Part B, patients received olaparib tablets (300 mg bid) for 5 days under fasting conditions; in Part C, patients were allowed continued access to olaparib. Safety was assessed throughout, with data reported for Parts A and B. A total of 60 and 56 patients were evaluable for safety and PK analyses, respectively; 57 patients entered Part B. Rate of olaparib absorption was slower in the presence of food (t (max) delayed by 2.5 h), resulting in a statistically significant similar to 21 % decrease in peak plasma exposure (C (max)) [ratio of geometric means (90 % CI), 0.79 (0.72, 0.86)] but only a marginal increase in olaparib absorption (AUC(0-a)) [ratio of geometric means (90 % CI), 1.08 (1.01, 1.16)]. The point estimate and 90 % CI for the AUC(0-a) treatment ratio were within pre-defined bioequivalence limits (0.80-1.25). Adverse event data were consistent with the known safety profile of olaparib. Results of this study showed that a high-fat meal decreases the rate of absorption and peak exposure to olaparib 300 mg tablets, although in the absence of an effect on the extent of olaparib absorption

    Effect of Itraconazole and Rifampin on the Pharmacokinetics of Olaparib in Patients With Advanced Solid Tumors:Results of Two Phase I Open-label Studies

    Get PDF
    PURPOSE: The metabolism of olaparib, a potent inhibitor of poly(ADP-ribose) polymerase (PARP) with demonstrated efficacy in patients with BRCA-mutated ovarian cancer, is mediated by cytochrome P450 (CYP) enzymes (predominantly CYP3A4/5). We assessed the potential of a CYP3A4 inhibitor (itraconazole) and inducer (rifampin) to alter the pharmacokinetic (PK) profile of olaparib following single oral tablet doses. METHODS: Two Phase I, open-label, non-randomized trials were conducted in patients with advanced solid tumors. In Study 7, patients received olaparib alone and co-administered with itraconazole; in Study 8, a separate group of patients received olaparib alone and co-administered with rifampin. No interaction between itraconazole and olaparib was concluded if two-sided 90% CIs for the treatment ratios of AUC and/or AUC0-t and Cmax fell within the bioequivalence range of 0.80-1.25. An interaction between rifampin and olaparib was concluded if the lower limit of the 90% CI for the treatment ratios was 50% decrease in olaparib AUC or Cmax in the presence of rifampin compared with olaparib alone). FINDINGS: In Study 7 (N = 59; 17 male, 42 female), 56 and 53 patients were evaluable for PK analysis following treatment with olaparib alone and olaparib plus itraconazole, respectively; in Study 8 (N = 22; 4 male, 18 female), all patients were evaluable. Co-administration of olaparib with itraconazole resulted in a statistically significant increase in the relative bioavailability of olaparib: Cmax treatment ratio, 1.42 (90% CI, 1.33-1.52); mean AUC treatment ratio, 2.70 (90% CI, 2.44-2.97). Mean CL/F and Vz/F were reduced (8.16 vs 3.05 L/h and 192 vs 75.1 L), although mean t(1/2) was unchanged (15.0 vs 15.6 hours). Co-administration of olaparib with rifampin resulted in a statistically significant decrease in the relative bioavailability of olaparib: Cmax treatment ratio, 0.29 (90% CI, 0.24-0.33); mean AUC treatment ratio, 0.13 (90% CI, 0.11-0.16). CL/F and Vz/F were increased when olaparib and rifampin were co-administered (6.36 vs 48.3 L/h and 112 vs 1076 L); however, mean t(1/2) was unchanged (13.0 vs 15.8 hours). Safety data for olaparib following tablet dosing were consistent with the known safety profile. IMPLICATIONS: Exposure to olaparib was significantly increased when co-administered with the potent CYP3A4 inhibitor itraconazole, and significantly decreased when co-administered with the potent CYP3A4 inducer rifampin, compared with olaparib alone. Potent CYP3A4 enzyme inhibitors and inducers should be avoided during olaparib treatment. ClinicalTrials.gov identifiers: NCT01900028 (Study 7) and NCT01929603 (Study 8)
    corecore