19 research outputs found

    Multisensory context portends object memory.

    Get PDF
    Multisensory processes facilitate perception of currently-presented stimuli and can likewise enhance later object recognition. Memories for objects originally encountered in a multisensory context can be more robust than those for objects encountered in an exclusively visual or auditory context [1], upturning the assumption that memory performance is best when encoding and recognition contexts remain constant [2]. Here, we used event-related potentials (ERPs) to provide the first evidence for direct links between multisensory brain activity at one point in time and subsequent object discrimination abilities. Across two experiments we found that individuals showing a benefit and those impaired during later object discrimination could be predicted by their brain responses to multisensory stimuli upon their initial encounter. These effects were observed despite the multisensory information being meaningless, task-irrelevant, and presented only once. We provide critical insights into the advantages associated with multisensory interactions; they are not limited to the processing of current stimuli, but likewise encompass the ability to determine the benefit of one's memories for object recognition in later, unisensory contexts

    The context-contingent nature of cross-modal activations of the visual cortex

    Get PDF
    Real-world environments are nearly always multisensory in nature. Processing in such situations confers perceptual advantages, but its automaticity remains poorly understood. Automaticity has been invoked to explain the activation of visual cortices by laterally-presented sounds. This has been observed even when the sounds were task-irrelevant and spatially uninformative about subsequent targets. An auditory-evoked contralateral occipital positivity (ACOP) at ~250ms post-sound onset has been postulated as the event-related potential (ERP) correlate of this cross-modal effect. However, the spatial dimension of the stimuli was nevertheless relevant in virtually all prior studies where the ACOP was observed. By manipulating the implicit predictability of the location of lateralised sounds in a passive auditory paradigm, we tested the automaticity of cross-modal activations of visual cortices. 128-channel ERP data from healthy participants were analysed within an electrical neuroimaging framework. The timing, topography, and localisation resembled previous characterisations of the ACOP. However, the cross-modal activations of visual cortices by sounds were critically dependent on whether the sound location was (un)predictable. Our results are the first direct evidence that this particular cross-modal process is not (fully) automatic; instead, it is context-contingent. More generally, the present findings provide novel insights into the importance of context-related factors in controlling information processing across the senses, and call for a revision of current models of automaticity in cognitive sciences

    Neuroplasticity: Unexpected Consequences of Early Blindness.

    Get PDF
    A pair of recent studies shows that congenital blindness can have significant consequences for the functioning of the visual system after sight restoration, particularly if that restoration is delayed

    Contextual factors multiplex to control multisensory processes.

    Get PDF
    This study analyzed high-density event-related potentials (ERPs) within an electrical neuroimaging framework to provide insights regarding the interaction between multisensory processes and stimulus probabilities. Specifically, we identified the spatiotemporal brain mechanisms by which the proportion of temporally congruent and task-irrelevant auditory information influences stimulus processing during a visual duration discrimination task. The spatial position (top/bottom) of the visual stimulus was indicative of how frequently the visual and auditory stimuli would be congruent in their duration (i.e., context of congruence). Stronger influences of irrelevant sound were observed when contexts associated with a high proportion of auditory-visual congruence repeated and also when contexts associated with a low proportion of congruence switched. Context of congruence and context transition resulted in weaker brain responses at 228 to 257 ms poststimulus to conditions giving rise to larger behavioral cross-modal interactions. Importantly, a control oddball task revealed that both congruent and incongruent audiovisual stimuli triggered equivalent non-linear multisensory interactions when congruence was not a relevant dimension. Collectively, these results are well explained by statistical learning, which links a particular context (here: a spatial location) with a certain level of top-down attentional control that further modulates cross-modal interactions based on whether a particular context repeated or changed. The current findings shed new light on the importance of context-based control over multisensory processing, whose influences multiplex across finer and broader time scales

    Selective attention to sound features mediates cross-modal activation of visual cortices.

    Get PDF
    Contemporary schemas of brain organization now include multisensory processes both in low-level cortices as well as at early stages of stimulus processing. Evidence has also accumulated showing that unisensory stimulus processing can result in cross-modal effects. For example, task-irrelevant and lateralised sounds can activate visual cortices; a phenomenon referred to as the auditory-evoked contralateral occipital positivity (ACOP). Some claim this is an example of automatic attentional capture in visual cortices. Other results, however, indicate that context may play a determinant role. Here, we investigated whether selective attention to spatial features of sounds is a determining factor in eliciting the ACOP. We recorded high-density auditory evoked potentials (AEPs) while participants selectively attended and discriminated sounds according to four possible stimulus attributes: location, pitch, speaker identity or syllable. Sound acoustics were held constant, and their location was always equiprobable (50% left, 50% right). The only manipulation was to which sound dimension participants attended. We analysed the AEP data from healthy participants within an electrical neuroimaging framework. The presence of sound-elicited activations of visual cortices depended on the to-be-discriminated, goal-based dimension. The ACOP was elicited only when participants were required to discriminate sound location, but not when they attended to any of the non-spatial features. These results provide a further indication that the ACOP is not automatic. Moreover, our findings showcase the interplay between task-relevance and spatial (un)predictability in determining the presence of the cross-modal activation of visual cortices

    A multisensory perspective on object memory.

    Get PDF
    Traditional studies of memory and object recognition involved objects presented within a single sensory modality (i.e., purely visual or purely auditory objects). However, in naturalistic settings, objects are often evaluated and processed in a multisensory manner. This begets the question of how object representations that combine information from the different senses are created and utilised by memory functions. Here we review research that has demonstrated that a single multisensory exposure can influence memory for both visual and auditory objects. In an old/new object discrimination task, objects that were presented initially with a task-irrelevant stimulus in another sense were better remembered compared to stimuli presented alone, most notably when the two stimuli were semantically congruent. The brain discriminates between these two types of object representations within the first 100ms post-stimulus onset, indicating early "tagging" of objects/events by the brain based on the nature of their initial presentation context. Interestingly, the specific brain networks supporting the improved object recognition vary based on a variety of factors, including the effectiveness of the initial multisensory presentation and the sense that is task-relevant. We specify the requisite conditions for multisensory contexts to improve object discrimination following single exposures, and the individual differences that exist with respect to these improvements. Our results shed light onto how memory operates on the multisensory nature of object representations as well as how the brain stores and retrieves memories of objects

    The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Get PDF
    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time

    What makes medical students better listeners?

    Get PDF
    Diagnosing heart conditions by auscultation is an important clinical skill commonly learnt by medical students. Clinical proficiency for this skill is in decline [1], and new teaching methods are needed. Successful discrimination of heartbeat sounds is believed to benefit mainly from acoustical training [2]. From recent studies of auditory training [3,4] we hypothesized that semantic representations outside the auditory cortex contribute to diagnostic accuracy in cardiac auscultation. To test this hypothesis, we analysed auditory evoked potentials (AEPs) which were recorded from medical students while they diagnosed quadruplets of heartbeat cycles. The comparison of trials with correct (Hits) versus incorrect diagnosis (Misses) revealed a significant difference in brain activity at 280-310 ms after the onset of the second cycle within the left middle frontal gyrus (MFG) and the right prefrontal cortex. This timing and locus suggest that semantic rather than acoustic representations contribute critically to auscultation skills. Thus, teaching auscultation should emphasize the link between the heartbeat sound and its meaning. Beyond cardiac auscultation, this issue is of interest for all fields where subtle but complex perceptual differences identify items in a well-known semantic context

    Sounds enhance visual completion processes.

    Get PDF
    Everyday vision includes the detection of stimuli, figure-ground segregation, as well as object localization and recognition. Such processes must often surmount impoverished or noisy conditions; borders are perceived despite occlusion or absent contrast gradients. These illusory contours (ICs) are an example of so-called mid-level vision, with an event-related potential (ERP) correlate at ∼100-150 ms post-stimulus onset and originating within lateral-occipital cortices (the IC <sub>effect</sub> ). Presently, visual completion processes supporting IC perception are considered exclusively visual; any influence from other sensory modalities is currently unknown. It is now well-established that multisensory processes can influence both low-level vision (e.g. detection) as well as higher-level object recognition. By contrast, it is unknown if mid-level vision exhibits multisensory benefits and, if so, through what mechanisms. We hypothesized that sounds would impact the IC <sub>effect</sub> . We recorded 128-channel ERPs from 17 healthy, sighted participants who viewed ICs or no-contour (NC) counterparts either in the presence or absence of task-irrelevant sounds. The IC <sub>effect</sub> was enhanced by sounds and resulted in the recruitment of a distinct configuration of active brain areas over the 70-170 ms post-stimulus period. IC-related source-level activity within the lateral occipital cortex (LOC), inferior parietal lobe (IPL), as well as primary visual cortex (V1) were enhanced by sounds. Moreover, the activity in these regions was correlated when sounds were present, but not when absent. Results from a control experiment, which employed amodal variants of the stimuli, suggested that sounds impact the perceived brightness of the IC rather than shape formation per se. We provide the first demonstration that multisensory processes augment mid-level vision and everyday visual completion processes, and that one of the mechanisms is brightness enhancement. These results have important implications for the design of treatments and/or visual aids for low-vision patients
    corecore