17 research outputs found

    Clinical emergence of neurometastatic merkel cell carcinoma: a surgical case series and literature review

    Get PDF
    Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine neoplasm of possible viral origin and is known for its aggressive behavior. The incidence of MCC has increased in the last 15 years. Merkel cell carcinoma has the potential to metastasize, but rarely involves the central nervous system. Herein, we report three consecutive surgical cases of MCC presenting at a single institution within 1 year. We used intracavitary BCNU wafers (Gliadel®) in two cases. Pathological features, including CK20 positivity, consistent with MCC, were present in all cases. We found 33 published cases of MCC with CNS involvement. We suggest that the incidence of neurometastatic MCC may be increasing, parallel to the increasing incidence of primary MCC. We propose a role for intracavitary BCNU wafers in the treatment of intra-axial neurometastatic MCC

    Depth Distribution in High Dimensions

    No full text
    Motivated by the analysis of range queries in databases, we introduce the computation of the Depth Distribution of a set mathcal {B} of axis aligned boxes, whose computation generalizes that of the Klee’s Measure and of the Maximum Depth. In the worst case over instances of fixed input size n, we describe an algorithm of complexity within (formula presented), using space within mathcal (nlog n), mixing two techniques previously used to compute the Klee’s Measure. We refine this result and previous results on the Klee’s Measure and the Maximum Depth for various measures of difficulty of the input, such as the profile of the input and the degeneracy of the intersection graph formed by the boxes

    Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Nino

    No full text
    The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent
    corecore