15 research outputs found

    A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations

    No full text
    The aim of this article is to propose advances for the preparation of hybrid nanocomposites prepared by the combination of intercalation from solution and melt-processing methods. This research investigates the effect of the laponite RDS content on the thermal, structural, and mechanical properties of thermoplastic starch (TPS). X-ray diffraction was performed to investigate the dispersion of the laponite RDS layers into the TPS matrix. The results show good nanodispersion, intercalation, and exfoliation of the clay platelets, indicating that these composites are true nanocomposites. The presence of laponite RDS also improves the thermal stability and mechanical properties of the TPSmatrix due to its reinforcement effect which was optimized by the high degree of exfoliation of the clay. Thus, these results indicate that the exfoliated TPS-laponite nanocomposites have great potential for industrial applications and, more specifically, in the packaging field. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav

    Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay

    No full text
    In this work, thermoplastic starch (TPS)-clay bionanocomposites were obtained by an innovative methodology using a combination of methodologies commonly used in the composites and nanocomposites preparations. The main objectives or novelties were to confirm efficiency of the processing methodology by field emission gun scanning electron microscopy and investigate the effect of clay content on the spectroscopic, bulk and surface hydrophilic/hydrophobic properties of these bionanocomposites. Raman and FTIR spectroscopies confirmed the changes in the spectroscopic properties of the TPS bionanocomposites with the addition of the clay materials. Water absorption and contact angle measurements were also used to analyze the effect of the clay content on the hydrophilic properties of the TPS bionanocomposites. The results also showed that the addition of the cloisite-Na+ clay increased the bulk and surface hydrophobicities of the TPS matrix, which may increase its industrial application, particularly in manufacturing of food containers. © 2013 Elsevier B.V

    Electrostatic interactions regulate the physical properties of gelatin-cellulose nanocrystals nanocomposite films intended for biodegradable packaging

    No full text
    International audienceCellulose nanocrystals (CNCs)-reinforced gelatin (Gel) films are appealing candidates for biodegradable packaging. However, tailoring the physical properties of Gel/CNCs films by control of pH and film-forming drying temperature continues unstudied. Here, we described the influence of pH on the physical properties of Gel/CNCs films covering different CNCs contents. The interactions between CNCs and Gel were studied by assessing the ζ-potential of Gel/CNCs suspensions under acidic (pH 3), Gel isoelectric point (pI, pH 6) and alkaline (pH 8) conditions. pH 3 promotes the electrostatic attraction, while pH 8 favors the electrostatic repulsion in the Gel-CNCs pair, increasing the suspension viscosity in both cases. The addition of 0.5 wt% CNCs decreased the water vapor permeability (WVP) of the Gel/CNCs films by 68% under electrostatic attractive forces and by 39% at the gelatin pI. The addition of 5 wt% CNCs at pH 3 resulted in the formation of complex coacervates, which decreased the mechanical properties and increased the WVP of Gel/CNCs films. Increasing pH above the Gel pI remarkedly increased the gelatin renaturation as triple helices, which was found to be key for increasing by 152% and 56% the Young's modulus and tensile strength, respectively, of the Gel/CNCs films with 0.5 wt% CNCsFilm-forming drying temperatures had an inverse effect on the triple helix content, and, consequently, on the physical properties of the Gel/CNCs films. These findings denote that modulating pH, CNCs amount, and drying temperature is a suitable strategy for tailoring the properties of nanocellulose-reinforced gelatin films for an extended range of food packaging applications

    Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent casting

    No full text
    International audienceProtein-based nanocomposites consisting of wheat gluten matrix (WG) and montmorillonite (MMT) modified with quaternary ammonium salts (QA) were developed by hydroalcoholic solvent casting. A simple clay-modifying method using five QA salts of different molecular lengths composed of 4, 5, 16, 40 and 72 carbon atoms, represented by C4N, C5OHN, C16N, C40N and C72N, was used for mineral intercalation. XRD analysis of composites containing Na-MMT, C16N-MMT, C40N-MMT, and C72N-MMT indicated the diffraction peaks corresponding to the interlayer spacing were absent, demonstrating that these particles were significantly dispersed in the WG matrix. Concentration and dispersion of MMT in the WG protein were the main factors affecting on permeability to water vapor P-wv through the films. There was a decrease of P-wv when either the raw or the modified MMT was added. The more prominent decrease of the P-wv was found for dispersed mineral particles, such as C16N-MMT, C40N-MMT, and C72N-MM

    Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing

    No full text
    Alginate (ALG) is an abundant, biocompatible, regenerative, and nontoxic polysaccharide that has potential applications in tissue engineering. Silver sulfadiazine (SDZ) is a topical antibiotic used to control bacterial infection in burns. Aiming to combine the intrinsic alginate characteristics and silver sulfadiazine antimicrobial properties, hydrotalcite ([Mg-Al]-LDH) was used as a host matrix to obtain a system efficient in delivering SDZ from alginate films. SDZ was successfully intercalated in [Mg-Al]-LDH through structural reconstruction. Different solutions were prepared using sodium alginate at 10 wt%, glycerol at 10 wt% as a plasticizer and [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ as fillers at 1 wt% and 5 wt%. Films were obtained by continuous casting and further characterized for their microstructural, mechanical, water barrier and antimicrobial properties. Cytotoxicity tests were also performed on fibroblasts cells. The incorporation of [Mg-Al]-LDH and [Mg-Al]-LDH/SDZ presented neither negative nor positive effects on the mechanical properties and morphology of the alginate films. Moreover, samples containing SDZ exhibited inhibitory activity against S. aureus, E. coli, and S. enterica. The addition of [Mg-Al]-LDH/SDZ even at the highest concentration did not afford a very significant cytotoxicity to the alginate-[Mg-Al]-LDH/SDZ films. These results describe a suitable approach for preparing innovative active wound dressings integrated to efficient drug delivery

    Efeito do tratamento das fibras nas propriedades do biocompósito de amido termoplástico/policaprolactona/sisal

    No full text
    Fibras de sisal com quatro tratamentos, a saber: fibra lavada com água, lavada com cicloexano/etanol, tratamento alcalino (NaOH) e tratamento com peróxido alcalino (branqueamento), foram incorporadas na blenda amido termoplástico/policaprolactona 80/20 (TPS/PCL). As propriedades morfológicas, mecânicas e térmicas dos biocompósitos TPS/PCL/Sisal foram analisadas. Os compósitos com a fibra branqueada apresentaram os melhores resultados de resistência à tração e estabilidade térmica. Verificou-se também melhora da adesão fibra-matriz no compósito com a fibra branqueada, com aumento de 145% na resistência à tração.Sisal fibers treated with four methods, namely washing with water, washing with cyclohexane/ethanol, alkali treatment (NaOH) and bleaching (alkaline peroxide treatment), were incorporated in thermoplastic starch/polycaprolactone 80/20 (TPS/PCL) samples. Morphological, mechanical and thermal properties of TPS/PCL/Sisal biocomposites were analysed. The best results were obtained with the composite using the bleached fiber, which had improved tensile strength and thermal stability. An increased adhesion between the fiber and matrix was also observed with the bleached fiber, with 145% increase in the tensile strengthFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    N,N,N-trimethyl chitosan nanoparticles as a vitamin carrier system

    No full text
    There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd

    Sustainable Production and in vitro Biodegradability of Edible Films from Yellow Passion Fruit Coproducts via Continuous Casting

    No full text
    Edible films made up of yellow passion fruit (YPF) rind and pectin as a matrix-forming agent are proposed as a means of valorizing passion fruit processing wastes. YPF films were produced at pilot-scale using continuous casting from aqueous formulations covering pectin/rind and water/pulp mass ratios of 100/0-0/100. YPF films were successfully obtained with systematic, tunable yellowish coloration and were achieved at an optimal temperature of 120 °C, leading to a drying time of 7 min and productivity of 0.03 m2 film min-1. YPF pulp is found to plasticize the pectin matrix of the films and thus can replace glycerol or other synthetic plasticizers. Films with the largest rind content (50 wt %) showed mechanical strength comparable to that of PVC cling film (9 vs 5 MPa). The biodegradable, renewable character of YPF films was demonstrated upon exposure to Escherichia coli, Staphylococcus aureus, and Bradyrhizobium diazoefficiens, a nitrogen-fixing symbiotic bacterium

    Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging

    No full text
    We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5–6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.This research was made possible thanks to the facilities of the Laboratory of Pulp and Paper 479 Science and Graphic Arts (LGP2) that is part of the LabEx Tec 21 (Investissements d'Avenir - grant 480 agreement n°ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d'Avenir - 481 grant agreement n° ANR-16-CARN-0025- 0), and Plant Macromolecule Research Center 482 (CERMAV) for the support to this work. This study was financed in part by CNPq, SISNANO 26 483 (MCTI), FINEP, Embrapa AgroNano research network (Embrapa), Coordenação de 484 Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) [Finance Code 001] and by the 485 São Paulo Research Foundation (FAPESP) [grant numbers 2016/03080-2, 2017/18725-2 and 486 2018/00278-2, 2018/10899-4, 2018/22214-6, 2018/18953-8]. We would like to thank Berthine 487 Khelifi , Cécile Sillard and Thierry Encinas from Grenoble Institute of Technology for their 488 expertise in providing SEM imaging, XPS and XRD analyses, respectively
    corecore