562 research outputs found

    Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis.

    Get PDF
    Abstract Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling

    Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges

    Get PDF
    The growing occurrence of bone disorders and the increase in aging population have resulted in the need for more effective therapies to meet this request. Bone tissue engineering strategies, by combining biomaterials, cells, and signaling factors, are seen as alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, skeletal tissue engineering has not yet achieved full translation into clinical practice because of several challenges. Bone biofabrication by additive manufacturing techniques may represent a possible solution, with its intrinsic capability for accuracy, reproducibility, and customization of scaffolds as well as cell and signaling molecule delivery. This review examines the existing research in bone biofabrication and the appropriate cells and factors selection for successful bone regeneration as well as limitations affecting these approaches. Challenges that need to be tackled with the highest priority are the obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal biochemical and mechanical stimuli release, in order to improve osseointegration as well as osteogenesis

    Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery

    Get PDF
    The implantation of chondrocytes, seeded on matrices such as hyaluronic acid or collagen membranes, is a method that is being widely used for the treatment of chondral defects. The aim of the present study was to evaluate the distribution, viability and phenotype expression of the cells seeded on a collagen membrane just at the time of the implantation. Twelve patients who were suffering from articular cartilage lesions were treated by the MACI(®) procedure. The residual part of each membrane was tested by colorimetric assay (MTT) and histochemical and ultrastructural analyses were carried out. In all of the samples a large number of viable cells, quite homogenously distributed, was detected. The cells expressed the markers of the differentiated hyaline chondrocytes. These data reassure in that the MACI procedure provides a suitable engineered tissue for cartilage repair, in line with the clinical evidences emerging in the literature

    Analysis of multiple protein detection methods in human osteoporotic bone extracellular matrix: From literature to practice

    Get PDF
    The punctual analysis of bone Extracellular Matrix (ECM) proteins represents a pivotal point for medical research in bone diseases like osteoporosis. Studies in this field, historically done to appreciate bone biology, were mainly conducted on animal samples and, up to today, only a few studies on protein detection in human bone are present. The challenges in bone ECM protein extraction and quantitation protocols are related to both the separation of proteins from the mineral content (i.e. hydroxyapatite) and the difficulty of avoiding protein denaturation during the extraction processes. The aim of the present work was to define appropriate protocol(s) for bone ECM protein extraction that could be applied to investigate both normal and pathological conditions. We compared and optimised some of the most used protocols present in the literature, modifying the protein precipitation method, the buffer used for resuspension and/or the volume of reagent used. Bradford and BCA assays and Western Blotting were used to evaluate the variations in the total protein recovery and the amount of selected proteins (Type I Collagen, TGF-β, IGF-1, Decorin, Osteopontin, Bone Sialoprotein-2 and Osteocalcin). Collectively, we were capable to draw-up two single-extract protocols with optimal recovery and ideal protein content, that can be used for a detailed analysis of ECM proteins in pathological bone samples. Time-consuming multi-extract procedures, optimised in their precipitation methods, are however crucial for a precise detection of specific proteins, like osteocalcin. As the matter of fact, also the demineralization processes, commonly suggested and performed in several protocols, could hinder an accurate protein detection, thus inherently affecting the study of a pathological bone ECM. This study represents a starting point for the definition of appropriate strategies in the study of bone extracellular matrix proteins involved in the onset and maintenance of bone diseases, as well as a tool for the development of customized scaffolds capable to modulate a proper feedback loop in bone remodelling, altered in case of diseases like osteoporosis

    The effects of ageing on dental pulp stem cells, the tooth longevity elixir

    Get PDF
    Stem cells are essential for tissue homeostasis and regeneration throughout the lifespan of multicellular rganisms. The decline in stem cell function during advanced age is associated with a reduced regenerative potential of tissues that leads to an increased frequency of diseases. Age-related changes also occur in the dental pulp tissue that represents a reliable model tissue, with high regenerative capability, for studying senescence mechanisms. However, little information is available concerning the effects of ageing on dental stem-cell function. In this mini-review, recent data on how the molecular and functional alterations that accumulate in stem cell populations during ageing result in modifications of dental pulp physiology are discussed. Changes that accumulate during ageing such as how reduction of pulp chamber volume, decreased vascular supply and modifications to the stem cell niches affect stem cell functions and, therefore, dental pulp regenerative potential in response to various stressful agents. Dental pulp cells from aged individuals are still metabolically active and secrete pro-inflammatory and matrix-degrading molecules. Furthermore, miRNAs and exosomes derived from dental pulp stem cells constitute an attractive source of nanovesicles for the treatment of age-related dental pathologies. Further investigation of the epigenetic alterations in dental pulp stem cells, accumulating during ageing, might reveal crucial information for potential stem cell-based therapeutic approaches in the elderly

    Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates.

    Get PDF
    In the repair of skeletal defects one of the major obstacles still remains an efficient vascularization of engineered scaffolds. We have examined the ability of insulin growth factor-1, alone or in association with vascular endothelial growth factor, to modulate the osteoblastic or endothelial commitment of periosteum-derived progenitor cells (PDPCs) and skin-derived multipotent stromal cells (S-MSCs). A selected gene panel for endothelial and osteoblastic differentiation as well as genes that can affect MAPK and PI3K/AKT signaling pathways were investigated. Moreover, gene expression profile of Sox2, Oct4, and Nanog transcription factors was assessed. Our results showed that under growth factor stimulation PDPCs are induced toward an osteoblastic differentiation, while S-MSCs seem to move along an endothelial phenotype. This different commitment seems to be linked to a diverse MAPK or PI3K/AKT signaling pathway activation. The analysis of genes for stemness evidenced that at least in PDPCs multipotency and differentiation could coexist. These results open interesting perspective for the development of innovative bone tissue engineering approaches based on a good network of angiogenesis and osteogenesis processes

    Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon

    Get PDF
    Electrospinning is a promising technique for the production of scaffolds aimed at the regeneration of soft tissues. The aim of this work was to develop electrospun bundles mimicking the architecture and mechanical properties of the fascicles of the human Achille tendon. Two different blends of poly(L-lactic acid) (PLLA) and collagen (Coll) were tested, PLLA/Coll-75/25 and PLLA/Coll-50/50, and compared with bundles of pure PLLA. First, a complete physico-chemical characterization was performed on non-woven mats made of randomly arranged fibers. The presence of collagen in the fibers was assessed by thermogravimetric analysis, differential scanning calorimetry and water contact angle measurements. The collagen release in phosphate buffer solution (PBS) was evaluated for 14 days: results showed that collagen loss was about 50% for PLLA/Coll-75/25 and 70% for PLLA/Coll-50/50. In the bundles, the individual fibers had a diameter of 0.48 ±0.14 μm (PLLA), 0.31 ±0.09 μm (PLLA/Coll-75/25), 0.33 ±0.08 μm (PLLA/Coll-50/50), whereas bundle diameter was in the range 300-500 μm for all samples. Monotonic tensile tests were performed to measure the mechanical properties of PLLA bundles (as-spun) and of PLLA/Coll-75/25 and PLLA/Coll-50/50 bundles (as-spun, and after 48 h, 7 days and 14 days in PBS). The most promising material was the PLLA/Coll-75/25 blend with a Young modulus of 98.6 ±12.4 MPa (as-spun) and 205.1 ±73.0 MPa (after 14 days in PBS). Its failure stress was 14.2 ±0.7 MPa (as-spun) and 6.8 ±0.6 MPa (after 14 days in PBS). Pure PLLA withstood slightly lower stress than the PLLA/Coll-75/25 while PLLA/Coll-50/50 had a brittle behavior. Human-derived tenocytes were used for cellular tests. A good cell adhesion and viability after 14 day culture was observed. This study has therefore demonstrated the feasibility of fabricating electrospun bundles with multiscale structure and mechanical properties similar to the human tendon

    Innovative eco-friendly hydrogel film for berberine delivery in skin applications†

    Get PDF
    Hydrogel formulations (masks or patches, without tissue support) represent the new frontier for customizable skin beauty and health. The employment of these materials is becoming popular in wound dressing, to speed up the healing process while protecting the affected area, as well as to provide a moisturizing reservoir, control the inflammatory process and the onset of bacterial development. Most of these hydrogels are acrylic-based at present, not biodegradable and potentially toxic, due to acrylic monomers residues. In this work, we selected a new class of cellulose-derived and biodegradable hydrogel films to incorporate and convey an active compound for dermatological issues. Films were obtained from a combination of different polysaccharides and clays, and berberine hydrochloride, a polyphenolic molecule showing anti-inflammatory, immunomodulatory, antibacterial and antioxidant properties, was chosen and then embedded in the hydrogel films. These innovative hydrogel-based systems were characterized in terms of water uptake profile, in vitro cytocompatibility and skin permeation kinetics by Franz diffusion cell. Berberine permeation fitted well to Korsmeyer–Peppas kinetic model and achieved a release higher than 100 µg/cm2 within 24 h. The latter study, exploiting a reliable skin model membrane, together with the biological assessment, gained insights into the most promising formulation for future investigations

    Bone and gut microbiota crosstalk: A novel 3D in vitro approach

    Get PDF
    The present research aimed at shedding light on the interplay between the composition of the human gut microbiota and bone cells
    corecore