40 research outputs found
Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset.
Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease
Assessment of increased glomerular permeability associated with recurrent focal segmental glomerulosclerosis using an in vitro model of the glomerular filtration barrier
The presence of circulating permeability factors (cPFs) has been hypothesized to be associated with recurrence of focal segmental glomerulosclerosis (rFSGS) in renal allografts. The available methods to detect cPFs are complex, not easily repeatable and inappropriate to represent the anatomical characteristics of the three-layer glomerular filtration barrier (GFB). Here we describe a novel method which measures the permeability to bovine serum albumin (BSA) through a three-layer device (3LD). The 3 layers comprise: (1) conditionally immortalized human podocytes (HCiPodo), (2) collagen type IV coated porous membrane and (3) human glomerular endothelial cells (HCiGEnC). Using this method, we found that sera from all rFSGS patients increased albumin permeability, while sera from non recurrent (nrFSGS) and genetic (gFSGS) forms of FSGS did not. The mechanisms underlying the increase of albumin permeability are probably due to endothelial cell damage as an initial event, which was demonstrated by the decrease of Platelet endothelial cell adhesion molecule (PECAM-1 or CD31), while the podocytes’ expressions of synaptopodin and podocin were normal. Furthermore, we also found that the plasmapheretic treatment (PPT) eliminated the effect of increasing BSA permeability in sera from rFSGS patients. These preliminary data suggest that our in vitro GFB model could not only be useful in predicting the recurrence of FSGS after renal transplantation (RTx), but also be a valuable in vitro model to study podocyte and endothelial cell biology
Urinary mRNA expression of glomerular podocyte markers in glomerular disease and renal transplant
The research of novel markers in urinary samples, for the description of renal damage, is of high interest, and several works demonstrated the value of urinary mRNA quantification for the search of events related to renal disease or affecting the outcome of transplant kidneys. In the present pilot study, a comparison of the urine mRNA expression of specific podocyte markers among patients who had undergone clinical indication to renal transplanted (RTx, n = 20) and native (N, n = 18) renal biopsy was performed. The aim of this work was to identify genes involved in podocytes signaling and cytoskeletal regulation (NPHS1, NPHS2, SYNPO, WT1, TRPC6, GRM1, and NEUROD) in respect to glomerular pathology. We considered some genes relevant for podocytes signaling and for the function of the glomerular filter applying an alternative normalization approach. Our results demonstrate the WT1 urinary mRNA increases in both groups and it is helpful for podocyte normalization. Furthermore, an increase in the expression of TRPC6 after all kinds of normalizations was observed. According to our data, WT1 normalization might be considered an alternative approach to correct the expression of urinary mRNA. In addition, our study underlines the importance of slit diaphragm proteins involved in calcium disequilibrium, such as TRPC6
Possible Benefits of a Low Protein Diet in Older Patients With CKD at Risk of Malnutrition: A Pilot Randomized Controlled Trial
Background: Current guidelines do not clarify whether older patients with advanced chronic kidney disease (CKD) may benefit of low protein (LP) diet if they are at risk of malnutrition. We compared the effects of normocalorie/normoprotein (NP) and normocalorie/LP diet on nutritional status and metabolic complications related to the progression of kidney damage in these patients. Methods: This pilot study had an open-label randomized-controlled design (ClinicalTrials.gov Id: NCT05015647). Thirty-five patients were treated for 6 months with two different diets (LP = 17) and (NP = 18). Malnutrition was assessed by the Malnutrition Inflammation Score and International Society of Renal Nutrition and Metabolism criteria. Renal function was assessed by creatinine and cystatin-C-based estimated glomerular filtration rate (eGFR). Results: At the end of the study, Malnutrition Inflammation Score was improved in both LP and NP groups (respectively: 3 ± 3 vs. 6 ± 1.5, p = 0.020 and 3 ± 2.5 vs. 6 ± 2, p = 0.012), prevalence of protein energy wasting syndrome decreased only in LP. LP group had higher eGFRcys-C (17 ± 6 vs. 12 ± 4 ml/min/1.73 m2; p < 0.05), lower serum urea (105 ± 65 vs. 138 ± 30 mg/dl; p < 0.05) and lower parathormone (68 ± 10 vs. 99 ± 61 ng/L; p < 0.05) than NP. Serum and urinary phosphorous did not change while fibroblast growth factor 23 (FGF23)-intact and FGF23 c-terminal increased in both groups [FGF23-intact in LP: 70 (48; 98) vs. 126 (90; 410) pg/ml, p < 0.01 and in NP: 86 (57; 194) vs. 143 (119; 186) pg/ml, p < 0.01; FGF23 c-terminal in LP: 77 (30.3; 112) vs. 111 (63; 384) RU/ml, p < 0.01 and in NP: 142 (56.6; 175) vs. 157 (76.7; 281) RU/ml, p < 0.01]. Conclusions: LP diet has a favorable impact on nutritional status as much as NP diet with possible greater benefits on the progression of kidney disease and some of its metabolic complications. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05015647, identifier: NCT05015647
Bone and Mineral Disorder in Renal Transplant Patients: Overview of Pathology, Clinical, and Therapeutic Aspects
Renal transplantation (RTx) allows us to obtain the resolution of the uremic status but is not frequently able to solve all the metabolic complications present during end-stage renal disease. Mineral and bone disorders (MBDs) are frequent since the early stages of chronic kidney disease (CKD) and strongly influence the morbidity and mortality of patients with CKD. Some mineral metabolism (MM) alterations can persist in patients with RTx (RTx-p), as well as in the presence of complete renal function recovery. In those patients, anomalies of calcium, phosphorus, parathormone, fibroblast growth factor 23, and vitamin D such as bone and vessels are frequent and related to both pre-RTx and post-RTx specific factors. Many treatments are present for the management of post-RTx MBD. Despite that, the guidelines that can give clear directives in MBD treatment of RTx-p are still missed. For the future, to obtain an ever-greater individualisation of therapy, an increase of the evidence, the specificity of international guidelines, and more uniform management of these anomalies worldwide should be expected. In this review, the major factors related to post-renal transplant MBD (post-RTx-MBD), the main mineral metabolism biochemical anomalies, and the principal treatment for post-RTx MBD will be reported
Bone effect and safety of one-year denosumab therapy in a Cohort of renal transplanted patients : an observational monocentric study
In 32-kidney transplanted patients (KTxps), the safety and the effects on BMD and mineral metabolism (MM) of one-year treatment with denosumab (DB) were studied. Femoral and vertebral BMD and T-score, FRAX score and vertebral fractures (sVF) before (T0) and after 12 months (T12) of treatment were measured. MM, renal parameters, hypocalcemic episodes (HpCa), urinary tract infections (UTI), major graft and KTxps outcomes were monitored. The cohort was composed mainly of females, n = 21. We had 29 KTxps on steroid therapy and 22 KTxps on vitamin D supplementation. At T0, 25 and 7 KTxps had femoral osteoporosis (F-OPS) and osteopenia (F-OPS), respectively. Twenty-three and six KTxps had vertebral osteoporosis (V-OPS) and osteopenia (V-OPS), respectively. Seventeen KTxps had sVF. At T12, T-score increased at femoral and vertebral sites (p = 0.05, p = 0.008). The prevalence of F-OPS and V-OPS reduced from 78% to 69% and from 72% to 50%, respectively. Twenty-five KTxps ameliorated FRAX score and two KTxps had novel sVF. At T12, a slight reduction of Ca was present, without HpCa. Four KTxps had UTI. No graft rejections, loss of graft or deaths were reported. Our preliminary results show a good efficacy and safety of DB in KTxps. Longer and randomized studies involving more KTxps might elucidate the possible primary role of DB in the treatment of bone disorders in KTxps
MCP1 Inverts the Correlation between FGF23 and Omega 6/3 Ratio: Is It Also True in Renal Transplantation?
During chronic kidney disease (CKD) progression, an increase in fibroblast growth factor (FGF23) is present. In stage 5, a positive correlation between FGF23 and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) emerges. Hypothesizing that the rising positive correlation between monocyte chemoattractant protein 1 (MCP1) and n-6 in stage 4 could be the cause, we previously explored FGF23 and MCP1's roles in dyslipidemia and cardiovascular risk in CKD. In the present paper, we retraced the study evaluating 40 kidney transplant patients (KTx), a cohort where several factors might modify the previous relationships found. An ELISA and gas chromatography assessed the MCP1, FGF23, and PUFA levels. Despite the FGF23 increase (p < 0.0001), low MCP1 levels were found. A decrease in the n-6/n-3 ratio (p = 0.042 CKD stage 4 vs. 5) lowered by the increase in both n-3 αlinolenic (p = 0.012) and docosapentaenoic acid (p = 0.049) was observed. A negative correlation between FGF23 and the n-6/n-3 ratio in CKD stage 4 (r2 -0.3 p = 0.043) and none with MCP1 appeared. According to our findings, different mechanisms in the relationship between FGF23, PUFAs, and MCP1 in CKD and KTx patients might be present, which is possibly related to the immunosuppressive status of the last. Future research will further clarify our hypothesis
NeuroD Expression in Podocytes and Interrelationships with Nephrin at Both Nuclear and Cytoplasmic Sites
Background/Aims The research of genes implicated in kidney glomerular function, eliciting cell fate program, is always at the forefront in nephrological studies. Several neurological molecules have been recently the object of study not only for their involvement in the central nervous system differentiation but also for their importance in the functionality of other organs and for mature phenotype, as in kidney. NeuroD, in CNS, is related to two functional roles, the early survival and the differentiation. The aim of our study was to ascertain the presence of NeuroD transcription factor in glomeruli and to understand which targets and mechanisms NeuroD controls. Methods: We used immunofluorescence (IF) studies on both human and mice renal tissues and on cultured podocytes to describe NeuroD distribution; then we investigated NeuroD binding to the nephrin promoter region in cultured podocytes by chromatin-immuno-precipitation (ChIP) assay. The overexpression of NeuroD in podocytes was used to establish first its role in nephrin synthesis, evaluated by real-Time quantitative (RTq) PCR and western-blot (WB) and successively to determine the recovery of cell morphology after adriamycin injury, measuring foot processes length. Results: We identified NeuroD transcription factor in glomeruli, in the same cells positive for WT1 and synaptopodin, namely podocytes; subsequently we observed a differentiation dependent NeuroD distribution in cultured podocytes, and a consistent link of NeuroD with the Nephrin promoter leading to the regulation of Nephrin translation and transcription. Our data also describes NeuroD expression in cytoplasm as phosphoprotein linked to nephrin and actinin4. Preliminary experiments seem to indicate NeuroD involved in dynamics of cell shape regulation after adriamycin injury. Conclusion: we propose that NeuroD possess in podocytes a dual ability acting in the nucleus as a transcription factor and in cytoplasm stabilizing cell shape
Novel pathogenetic variants in PTHLH and TRPS1 genes causing syndromic brachydactyly
Skeletal disorders, including both isolated and syndromic brachydactyly type E, derive from genetic defects affecting the fine tuning of the network of pathways involved in skeletogenesis and growth-plate development. Alterations of different genes of this network may result in overlapping phenotypes, as exemplified by disorders due to the impairment of the parathyroid hormone/parathyroid hormone-related protein pathway, and obtaining a correct diagnosis is sometimes challenging without a genetic confirmation. Five patients with "AHO-like" (Albright's Hereditary Osteodystrophy) skeletal malformations without a clear clinical diagnosis were analyzed by whole exome sequencing and novel potentially pathogenic variants in PTHLH (BDE with short stature, BDE2) and TRPS1 (tricho-rhino-phalangeal syndrome, TRPS) were discovered. The pathogenic impact of these variants was confirmed by in vitro functional studies. This study expands the spectrum of genetic defects associated with BDE2 and TRPS and demonstrates the pathogenicity of TRPS1 missense variants located outside both the nuclear localization signal and the GATA and Ikaros-like binding domains. Unfortunately, we could not find distinctive phenotypic features that might have led to an earlier clinical diagnosis, further highlighting the high degree of overlap among skeletal syndromes associated with brachydactyly and AHO-like features, and the need for a close interdisciplinary workout in these rare patients
