252 research outputs found

    Cavity state preparation using adiabatic transfer

    Get PDF
    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage or STIRAP. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another, and also to prepare non-trivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an EPR state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrodinger cat states. The theoretical considerations are supported by numerical simulations.Comment: 11 pages, 9 figures. Accepted in Phys. Rev.

    Evidence of Uppermost Proterozoic to Lower Cambrian miogeoclinal rocks and the Mojave-Snow Lake Fault: Snow Lake Pendant, central Sierra Nevada, California

    Get PDF
    This is the published version. Copyright 2010 American Geophysical Union. All Rights Reserved.Displaced uppermost Precambrian to Lower Cambrian miogeoclinal strata occur within Snow Lake pendant in the central Sierra Nevada. These rocks have been correlated with the Stirling Quartzite, the Wood Canyon Formation, the Zabriskie Quartzite, and the Carrara Formation in the western Mojave Desert and the San Bernardino Mountains (Lahren and Schweickert, 1989; Lahren, 1989). This correlation is based on new, updated, and previously reported data including (1) lithologic similarities, (2) overall stratigraphic sequence, (3) vertical sequence within individual formations, (4) approximate stratigraphic thicknesses, (5) Skolithos in the correct stratigraphie position, (6) depositional environments, and (7) petrographic character and provenance of quartz arenites. The correlation is strengthened by the fact that Snow Lake pendant and the western Mojave share many other close similarities including (1) initial 87Sr/86Sr ratios of associated granitic rocks >0.706, (2) passive margin tectonic setting of Precambrian to Cambrian miogeoclinal rocks, (3) dikes of the Independence dike swarm, (4) possible Lower Triassic overlap sequence, the Fairview Valley Formation, (5) petrographically similar gabbroic complexes of the same age, (6) associated eugeoclinal rocks, and (7) identical(?) pre-Tertiary structural configuration. New U/Pb zircon geochronology unequivocally shows that dikes at Snow Lake pendant are coeval with the Independence dike swarm of the eastern Sierra and the western Mojave desert and that associated gabbroic complexes in both the Mojave and Snow Lake pendant are the same age. Correlation of Snow Lake pendant with the western Mojave requires about 400 km of dextral displacement of the rocks of Snow Lake pendant, together with associated rocks (Snow Lake block), from the western Mojave Desert along the Mojave-Snow Lake fault. Displacement most likely occurred after 150 Ma, the age of the Independence dike swarm, and before about 110 Ma, the age of major plutons within the Sierra Nevada batholith. This interpretation, if correct, holds major implications for allochthonous terranes west of Snow Lake pendant, which were probably attached to the Snow Lake block before its northward transport. In addition, a number of Paleozoic and Mesozoic tectonic features in western Nevada and eastern California may have been offset dextrally along the proposed Mojave-Snow Lake fault

    Media coverage and public understanding of sentencing policy in relation to crimes against children

    Get PDF
    This research examines how the media report on sentences given to those who commit serious crimes against children and how this impacts on public knowledge and attitudes. Three months of press and television coverage were analysed in order to establish the editorial lines that are taken in different sections of the media and how they are promoted by selective reporting of sentencing. Results indicate that a small number of very high profile crimes account for a significant proportion of reporting in this area and often, particularly in the tabloid press, important information regarding sentencing rationale is sidelined in favour of moral condemnation and criticism of the judiciary. Polling data indicate that public attitudes are highly critical of sentencing but also confused about the meaning of tariffs. The article concludes by discussing what can be done to promote a more informed public debate over penal policy in this area

    High Throughput Petrochronology and Sedimentary Provenance Analysis by Automated Phase Mapping and LAICPMS

    Get PDF
    The first step in most geochronological studies is to extract dateable minerals from the host rock, which is time consuming, removes textural context, and increases the chance for sample cross contamination. We here present a new method to rapidly perform in situ analyses by coupling a fast scanning electron microscope (SEM) with Energy Dispersive X-ray Spectrometer (EDS) to a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LAICPMS) instrument. Given a polished hand specimen, a petrographic thin section, or a grain mount, Automated Phase Mapping (APM) by SEM/EDS produces chemical and mineralogical maps from which the X-Y coordinates of the datable minerals are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic analysis. We apply the APM1LAICPMS method to three igneous, metamorphic, and sedimentary case studies. In the first case study, a polished slab of granite from Guernsey was scanned for zircon, producing a 60968 Ma weighted mean age. The second case study investigates a paragneiss from an ultra high pressure terrane in the north Qaidam terrane (Qinghai, China). One hundred seven small (25 mm) metamorphic zircons were analyzed by LAICPMS to confirm a 41964 Ma age of peak metamorphism. The third and final case study uses APM1LAICPMS to generate a large provenance data set and trace the provenance of 25 modern sediments from Angola, documenting longshore drift of Orange River sediments over a distance of 1,500 km. These examples demonstrate that APM1LAICPMS is an efficient and cost effective way to improve the quantity and quality of geochronological data

    Efficient and robust entanglement generation in a many-particle system with resonant dipole-dipole interactions

    Get PDF
    We propose and discuss a scheme for robust and efficient generation of many-particle entanglement in an ensemble of Rydberg atoms with resonant dipole-dipole interactions. It is shown that in the limit of complete dipole blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While dark-state population transfer is not capable of creating entanglement, other adiabatic processes are identified that lead to complex, maximally entangled states, such as the N-particle analog of the GHZ state in a few steps. The process is robust, works for even and odd particle numbers and the characteristic time for entanglement generation scales with N^a, with a being less than unity.Comment: 4 figure

    Scheme for generating entangled states of two field modes in a cavity

    Full text link
    This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare basis's, related by the unitary transformation, becomes particularly simple. It is shown how to generate, the highly non-classical, entangled coherent states of the two modes, both in the zero and large detuning cases. An advantage with the zero detuning case is that the preparation is deterministic and no atomic measurement is needed. For the large detuning situation a measurement is required, leaving the field in either of two orthogonal entangled coherent states.Comment: Accepted in J. Mod. Opt.; 12 pages; Replaced with revised version. Extended discussion of experimental realizations, earlier studies in the field and on the frequency dependence in the adiabatic eliminatio

    Isotopic composition (238U/235U) of some commonly used uranium reference materials

    Get PDF
    We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be < 0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations

    Extreme oxygen isotope zoning in garnet and zircon from a metachert block in melange reveals metasomatism at the peak of subduction metamorphism

    Get PDF
    A tectonic block of garnet quartzite in the amphibolite-facies melange of the Catalina Schist (Santa Catalina Island, California, USA) records the metasomatic pre-treatment of high-delta O-18 sediments as they enter the subduction zone. The block is primarily quartz, but contains two generations of garnet that record extreme oxygen isotope disequilibrium and inverse fractionations between garnet cores and matrix quartz. Rare millimeter-scale garnet crystals record prograde cation zoning patterns, whereas more abundant similar to 200-mu m-diameter crystals have the same composition as rims on the larger garnets. Garnets of both generations have high-delta O-18 cores (20.8 parts per thousand-26.3 parts per thousand, Vienna standard mean ocean water) that require an unusually high-delta O-18 protolith and lower-delta O-18, less variable rims (10.0 parts per thousand-11.2 parts per thousand). Matrix quartz values are homogeneous (13.6 parts per thousand). Zircon crystals contain detrital cores (delta O-18 = 4.7 parts per thousand-8.5 parts per thousand, 124.6 + 1.4/-2.9 Ma) with a characteristic igneous trace element composition likely sourced from arc volcanics, surrounded by zircon with metamorphic age (115.1 +/- 2.5 Ma) and trace element compositions that suggest growth in the presence of garnet. Metamorphic zircon decreases in delta O-18 from near-core (24.1 parts per thousand) to rim (12.4 parts per thousand), in equilibrium with zoned garnets. Collectively, the data document the subduction of a mixed high-delta O-18 siliceous ooze and/or volcanic ash protolith reaching temperatures of 550-625 degrees C prior to the nucleation of small garnets without influence from external fluids. Metasomatism was recorded in rims of both garnet and zircon populations as large volumes of broadly homogeneous subduction fluids stripped matrix quartz of its extremely high oxygen isotope signature. Thus, zoned garnet and zircon in high-delta O-18 subducted sediments offer a detailed window into subduction fluids
    corecore