Oberlin Digital Commons at Oberlin

Faculty & Staff Scholarship

7-1-2019

Extreme oxygen isotope zoning in garnet and zircon from a metachert block in melange reveals metasomatism at the peak of subduction metamorphism

F. Zeb Page Oberlin College, Zeb.Page@oberlin.edu

Emilia M. Cameron

Clara Margaret Flood

Jeffrey W. Dobbins

Michael J. Spicuzza

See next page for additional authors

Follow this and additional works at: https://digitalcommons.oberlin.edu/faculty_schol

Part of the Geology Commons

Repository Citation

Page, F. Zeb, Emilia M. Cameron, Clara Margaret Flood, et al. 2019. "Extreme oxygen isotope zoning in garnet and zircon from a metachert block in melange reveals metasomatism at the peak of subduction metamorphism." Geology 47(7): 655-658.

This Article is brought to you for free and open access by Digital Commons at Oberlin. It has been accepted for inclusion in Faculty & Staff Scholarship by an authorized administrator of Digital Commons at Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

Authors

F. Zeb Page, Emilia M. Cameron, Clara Margaret Flood, Jeffrey W. Dobbins, Michael J. Spicuzza, Kouki Kitajima, Ariel Strickland, Takayuki Ushikubo, Christopher G. Mattinson, and John W. Valley

- 1 Extreme oxygen isotope zoning in garnet and zircon from a
- 2 metachert block in mélange reveals metasomatism at the peak of
- 3 subduction metamorphism
- 4 F. Zeb Page¹, Emilia M. Cameron^{1,2}, Clara Margaret Flood¹, Jeffrey W. Dobbins¹, Michael
- 5 J. Spicuzza², Kouki Kitajima², Ariel Strickland², Takayuki Ushikubo^{2***}, Christopher G.
- 6 Mattinson³, and John W. Valley²
- 7 ¹ Geology Department, Oberlin College, Oberlin, Ohio 44074, USA
- 8 ² WiscSIMS, Department of Geoscience, University of Wisconsin -Madison, Wisconsin 53706,
- 9 *USA*
- ³Department of Geological Sciences, Central Washington University, Ellensburg, Washington
 98926
- 12 *** Present Address: Kochi Institute for Core Sample Research, JAMSTEC 200 Monobe-otsu,
- 13 Nankoku, Kochi 783-8502 Japan
- 14
- 15
- 16 Post-Review revision
- 17 April 17, 2019
- 18

19 ABSTRACT

20 A tectonic block of garnet quartzite in the amphibolite-facies mélange of the Catalina 21 Schist (Santa Catalina Island, California, USA) records the metasomatic pre-treatment of high-22 δ^{18} O sediments as they enter the subduction zone. The block is primarily quartz, but contains two 23 generations of garnet that record extreme oxygen isotope disequilibrium and inverse 24 fractionations between garnet cores and matrix quartz. Rare mm-scale garnet crystals record 25 prograde cation zoning patterns, whereas more abundant $\sim 200 - \mu m$ diameter crystals have the 26 same composition as rims on the larger garnets. Garnets of both generations have high $\delta^{18}O$ cores (20.8-26.3‰, VSMOW) that require an unusually high– δ^{18} O protolith, and lower– δ^{18} O, 27 28 less variable rims (10.0-11.2‰). Matrix quartz values are homogeneous (13.6‰). Zircon crystals contain detrital cores ($\delta^{18}O = 4.7-8.5\%$, 124.6 +1.4/-2.9 Ma), with characteristic igneous 29 30 trace-element composition likely sourced from arc-volcanics, surrounded by zircon with 31 metamorphic age (115.1 \pm 2.5 Ma) and trace-element compositions that suggest growth in the presence of garnet. Metamorphic zircon decreases in δ^{18} O from near-core (24.1‰) to rim 32 33 (12.4%), in equilibrium with zoned garnets. 34 Collectively, the data document the subduction of a mixed high- δ^{18} O siliceous 35 ooze/volcanic ash protolith reaching temperatures of 550-625 °C prior to the nucleation of small

36 garnets without influence from external fluids. Metasomatism is recorded in rims of both garnet

37 and zircon populations as large volumes of broadly homogeneous subduction fluids stripped

38 matrix quartz of its extremely high oxygen isotope signature. Zoned garnet and zircon in high-

39 δ^{18} O subducted sediments offer a detailed window into subduction fluids.

40

41

42 INTRODUCTION

43 The nature and timing of mass transfer between the subducting plate and the sub-arc 44 mantle is critical to our understanding of crustal formation at convergent margins and its 45 geochemical signatures. Chemical and mechanical hybridization within subduction mélange 46 plays an important role in these processes (e.g., Bebout and Penniston-Dorland, 2016), giving 47 rise to models suggesting that partial melting of diapirs of hybridized mélange rocks are 48 responsible for the classic trace element signature of arc rocks (Marschall and Schumacher, 49 2012) and the diversity of magma series found at convergent margins (Cruz-Uribe et al., 2018). 50 Adding to these complications is the recent discovery that some sediments have entered the 51 mantle and melted without mixing or hybridization, preserving extreme oxygen isotope 52 signatures of surface weathering in their neoformed igneous zircon (Spencer et al., 2017). If 53 subducted sediment can regularly carry its characteristically enriched oxygen isotope signature $(\delta^{18}O = -7 - 42\%)$, VSMOW [Vienna standard mean ocean water]; Kolodny and Epstein, 1976; 54 Eiler et al., 2001; Payne et al, 2015) into the mantle ($\delta^{18}O_{Ol} = 5.1\%$, Eiler et al., 2000), it is 55 56 surprising that oxygen isotope variability within the subarc mantle is so subtle and challenging to 57 measure (Eiler et al., 1998). A solution to this discrepancy may be found in the fluid 58 metasomatism of subducted sediments.

59 The first and perhaps most dramatic illustrations of a high degree of fluid flow within 60 subduction mélange were studies of the oxygen isotope ratios of quartz and carbonate in veins 61 within the Catalina Schist subduction complex (California, USA) suggesting km-scale oxygen 62 isotope homogenization driven by large fluid fluxes (Bebout and Barton, 1989; Bebout, 1991). 63 Over the last quarter century, the Catalina Schist has served as a laboratory for the study of 64 subduction mélange, with numerous studies detailing fluid metasomatism and mechanical

3

mixing processes in the subduction channel by means of stable isotopes (e.g., Bebout, 1991;
Penniston-Dorland et al., 2012), major and trace elements (e.g., Sorenson and Barton, 1987;
Hickmott et al., 1992; Penniston-Dorland et al., 2014) and radiogenic isotopes (King et al.,
2006).

69 The in-situ analysis of oxygen isotopes in garnet is a powerful tool with which to 70 decipher complex or extremely subtle fluid histories and tie them to the metamorphic record. In 71 rocks that have experienced significant metasomatism, the extremely slow intragranular 72 diffusion of oxygen in garnet allows it to preserve a robust geochemical record through all but 73 the hottest and longest of metamorphic events (Vielzeuf et al., 2005). Oxygen isotope variability 74 in garnets from eclogite has illustrated signals of infiltration by mantle (Russell et al., 2013) and 75 supracrustal (e.g., Page et al., 2014; Martin et al., 2014; Rubatto and Angiboust, 2015) fluids that 76 were previously undetectable using bulk methods.

Chert and siliceous schist are high– δ^{18} O lithologies (Eiler et al., 2001) that are found within the amphibolite-facies Catalina Schist mélange (Platt, 1975). In this contribution, we explore the metasomatism of a high– δ^{18} O garnet- and zircon- bearing metachert from a classic subduction mélange, in order to better understand the timing and metamorphic conditions of subduction fluid metasomatism, and to gain a more complete picture of how fluids mitigate the influence of high- δ^{18} O subduction inputs.

83

84 CATALINA GARNET QUARTZITE

Although much less numerous than the better-studied garnet-hornblende lithology, tectonic
blocks of garnet quartzite are also found within the amphibolite-facies metasedimentary mélange
of the Catalina Schist (Santa Catalina Island, California, USA), as well as in more coherent, fault-

88 bounded sheets (Platt, 1975; Bebout, 1991). In this study, we report on one exceptional sample of 89 garnet quartzite collected from a meter-scale tectonic block hosted in a shale-matrix mélange from 90 Upper Cottonwood Canyon (33°23'46.20"N, 118°24'52.80"W, Fig. 1A). The quartzite is 91 composed primarily of quartz (93%), garnet (6%), and chlorite (<0.5%), with trace rutile, apatite, 92 amphibole, and zircon (Fig. 1B). Garnet is present in two populations: copious fine-grained 93 (<200µm-diameter) crystals dispersed throughout the sample and a smaller number of larger 94 garnets (1-3mm-diameter, Fig. 1B). The larger crystals have abundant inclusions, which are 95 primarily quartz and apatite. X-ray mapping and major element traverses show that the larger 96 garnets display classic prograde cation-zoning profiles with decreasing Mn and increasing Mg# 97 from core to rim, and with rim compositions similar to smaller, more homogenous (in cations) 98 garnets in the same rock (Figs. 2A, B).

99

100 **Oxygen Isotopes of Quartz and Garnet**

101 Ion microprobe analysis of garnets (Page et al., 2010, see GSA Data Repository for full 102 data, Tables DR-1, DR-2, and methods) shows extreme oxygen isotope zoning; values of δ^{18} O 103 are 20.8-26.3‰ in garnet cores and 10.0-11.2‰ in garnet rims (Fig. 2A). Both large and small 104 garnets in this sample show a similar range in δ^{18} O, despite the difference in cation zoning and 105 crystal size. Zoning in oxygen isotopes is sharp, with up to a 7% drop in δ^{18} O over a few 106 micrometers, whereas cation zonation is much more gradual with slightly increased Ca and Mg 107 in the rims of larger garnets (Fig. 2). Smaller garnets are nearly homogeneous with a slight 108 increase in Mg# from core to rim. Matrix quartz has no systematic zoning in 109 cathodoluminescence imaging (CL) and is homogeneous in δ^{18} O with ion microprobe analyses 110 (13.5%) identical (within uncertainty) to bulk (~2mg) analysis by laser fluorination (13.6%).

111 Garnet-core and quartz pairs yield reversed fractionations ($\delta^{18}O_{grt} > \delta^{18}O_{qz}$), indicating profound 112 disequilibrium. Eleven analyses of quartz inclusions in large garnet cores yield $\delta^{18}O = 13.8$ -113 16.2‰, higher than matrix quartz, but not in equilibrium with host garnet. Inclusions were 114 generally >50µm, and commonly along cracks and so are unlikely to preserve their original 115 values.

116

117 Oxygen Isotopes in Zircon

118Zircons were separated from the sample and mounted in epoxy for analysis (see GSA119Data Repository). CL imaging (Fig. 3A) reveal oscillatory-zoned cores, often as fragments of120crystals, containing inclusions of quartz, K-feldspar, and biotite. These detrital cores are121surrounded by annuli of variable intensity, somewhat mottled zircon, containing inclusions of122quartz, biotite, sphene, and rutile. Outside of this mottled zone, zircons typically have darker-123intensity-CL oscillatory-zoned rims, with rare crystals containing a brighter outer rim with faint124oscillatory zoning.

125 Zircons were analyzed for their oxygen isotope ratios by ion microprobe using both a 126 \sim 15- and a sub-1-µm diameter beam (Tables DR-4, -5). Highly precise and accurate oxygen 127 isotope ratios from the larger analysis pits are correlated with CL zonation and inclusion population. Zircon cores (n=7) have δ^{18} O from 4.7 to 8.4‰ (Figs. 3A, 3B). Zircon with mottled 128 CL immediately outside of detrital cores (n=17) has an extremely high δ^{18} O (Fig. 3A, 3B) of 129 130 $22.6 \pm 3.3\%$ (2 SD, sample) if one anomalously low analysis is discounted. Intermediate-131 intensity oscillatory-zoned rims (n=20) have lower δ^{18} O values (17.3 ±3.9%), and rare bright outer rims have lower-still δ^{18} O values (12.9 ±3.3‰). To further determine if there is a 132 133 systematic zoning pattern in zircon like that found in garnet, 29 sub-1-µm analyses (following

the method of Page et al., 2007) were made in traverses across a single zircon (Fig. 3A). These high-spatial resolution (but less precise, ± 0.9 -1.7‰, 2S.D.) analyses confirm the presence of a low δ^{18} O core (6.3 $\pm 1.1\%$, 2S.D., n=6), surrounded by an extremely high- δ^{18} O mottled CL region (22.6 $\pm 2.4\%$, n=15), indistinguishable within the uncertainty of the sub-1-µm data from the 15-µm-diameter analyses of the same zones. An outer, darker oscillatory-zoned rim has δ^{18} O of 17.0 $\pm 2.5\%$, n=8). The zircon chosen for this analysis does not have an outermost, lighter rim.

1.0

141 PRESSURE, TEMPERATURE, AND TIME HISTORY

142 The limited mineralogy of this sample coupled with its metasomatic history and zoned 143 minerals, makes thermobarometry challenging. However, an equilibrium assemblage diagram 144 calculated using an estimate of the bulk composition and the computer package Perple X 145 (Connolly, 2009; Fig. DR-1) yields reasonable results. The observed assemblage (qz+grt+ru±chl) 146 is predicted to form at pressures greater than 8kbar and temperatures greater than 550°C. The 147 core to rim increase of Mg# observed in the large garnets is consistent with growth during 148 increasing temperatures in the presence of chlorite, and is predicted by the model to have taken 149 place at ~550-650°C, at pressures of greater than 11kbar, consistent with existing pressure and 150 temperature estimates of amphibolite blocks in the same mélange and [Zr]-in-rutile thermometry 151 from this same sample (Sorenson and Barton, 1987; Hartley et al., 2016; Penniston-Dorland et 152 al., 2018). The closeness between the conditions predicted by the model and existing 153 thermobarometry from Catalina suggests that the metasomatism of this block did not involve 154 substantial change in cation composition. Regardless of the precise conditions of metamorphism, the concomitant decrease in δ^{18} O with increasing Mg# in garnet requires metasomatism as the 155 156 sample increased in temperature within the subduction environment.

157	Zircons were additionally analyzed by SHRIMP-RG for U-Pb isotopes and select trace
158	elements (GSA Data Repository). Detrital zircon cores have more elevated Th/U ratios (0.36-
159	0.89), and are older than rims; 8 of 9 analyses yield a coherent 204 Pb-corrected 206 Pb*/ 238 U age of
160	124.6 +1.4/-2.9 Ma (Fig. 3C). Th/U ratios of rims are lower (0.02-0.13) and yield an age of
161	115.1±2.4 Ma consistent with an igneous origin for zircon cores, and a metamorphic one for the
162	rims (Fig. 3C). Zircon rims also have smaller Eu-anomalies (Eu/Eu* close to 1) and flatter
163	HREE patterns, consistent with a metamorphic origin in a garnet-present, plagioclase-absent
164	high-pressure environment (Fig. 3D).

165

166 **DISCUSSION**

167 Taken together, the P-T-t-fluid data preserved in garnet and zircon from this sample 168 provide a detailed record of metasomatic events within the subduction channel. A mixed-169 lithology protolith containing both extremely high- δ^{18} O siliceous material intermixed with 170 intermediate/mafic igneous material including detrital igneous zircon grains was subducted in the 171 Catalina trench. The most plausible interpretation is that the protolith was a mixture of chert or 172 siliceous ooze mixed with ~124 Ma arc volcanoclastic material. The relative purity of the 173 quartzite and the narrow range of zircon core ages seems to preclude weathering of plutonic 174 source material as an origin for the inherited cores. This mixed sediment was subducted and 175 metamorphosed initially as a closed system, with larger, prograde garnet cores having high and 176 unchanging δ^{18} O values. The extreme oxygen isotope ratio of this sample (quartz in equilibrium) 177 with garnet cores at 550°C would have been greater than 30‰, Valley et al., 2003) makes it 178 highly sensitive to infiltration from external fluids with lower δ^{18} O. A second generation of 179 garnets nucleated near the peak of metamorphism, but their growth was not initiated by an

180 external fluid, as core δ^{18} O compositions are identical to larger garnets. As metamorphic 181 temperatures reached their peak, an external fluid permeated the sample, perhaps due to introduction of the block into the subduction mélange, shifting matrix quartz δ^{18} O from ~30% to 182 13.6%. Slow rates of intragranular diffusion preserve a record of the original high- δ^{18} O 183 184 composition of garnet and zircon, and their continued growth documents decreasing δ^{18} O from 185 ~24‰ to ~17‰ to ~11‰ VSMOW, possibly in two discreet pulses. Fractionation between 186 matrix quartz and garnet rim compositions yield temperatures of ~600-750°C (Valley et al., 187 2003), consistent with estimates of peak metamorphic temperatures for the block and the region. 188 Likewise, garnet cation composition records increasing temperature (pressure is not well 189 constrained) during metasomatism. Perhaps upwelling within the subduction channel stopped 190 quartz recrystallization and garnet growth simultaneously, effectively ending the record 191 preserved in this sample.

192 The limited range of δ^{18} O in quartz and calcite veins within the Catalina Schist first reported by Bebout and Barton (1989) suggests that the entire package of subduction rocks on 193 194 Catalina Island interacted with a remarkably homogeneous supracrustal fluid reservoir derived 195 from metamorphic dehydration of minerals deeper along the subducting slab with an oxygen 196 isotope composition of 13±1.0% VSMOW. The quartz δ^{18} O value for the block in mélange in 197 this study (13.6% VSMOW) yields a calculated water δ^{18} O value of 12.3% VSMOW (650°C, 198 Friedman and O'Neil, 1977) in close agreement with the range reported by Bebout and Barton. 199 Although high– δ^{18} O sediments make up a volumetrically small portion of subducted 200 material, the extreme contrast between their isotope ratios and those of the mantle make them 201 likely candidates for introducing fine-scale isotope anomalies in the sub-arc mantle. Indeed, the 202 recent discovery of high– δ^{18} O S-type granite within supra-subduction-zone mantle as well as

203 this contribution show that this can happen (Spencer et al., 2017). The sample documented in this 204 study is an example of the most extreme contrast in δ^{18} O that one might expect to be subducted, with an estimated protolith δ^{18} O of 30%. However, the metasomatic processes documented by 205 206 garnet and zircon zonation in this metachert from Catalina show that subduction fluids can all 207 but wipe out extremely high– δ^{18} O inputs to subduction zones. Given the modest modal 208 proportion of garnet (7%) with respect to quartz (93%) in this sample, and assuming δ^{18} O values 209 of 24‰ for garnet and 14‰ for quartz, the whole rock δ^{18} O of this rock must be less than 15‰, 210 a value that can also be found in the much more abundant subducted metabasalts with protoliths enriched in ¹⁸O by low-temperature interaction with sea water (Eiler, 2001). Subduction fluids 211 212 play a vital role in the generation of arc magmatism and continental growth, but is also seems 213 that they play an important role in buffering the δ^{18} O of rocks that are recycled into the mantle 214 by subduction, with only strongly refractory (and volumetrically minor) phases such as zircon 215 and garnet able to carry extreme oxygen isotope ratios into the mantle.

216

217 ACKNOWLEDGMENTS

218 We thank Eric Essene, who provided mentorship, assistance in the field, and partial 219 funding for SIMS analysis, S. Penniston-Dorland, E. Walsh and the 2012 Keck Catalina Project 220 (NSF-REU-1062720) students for assistance with fieldwork on Catalina Island, and the Catalina 221 Island Conservancy for access and field support. Comments from Christopher Spencer, two 222 anonymous reviewers and editor Chris Clarke improved this manuscript and are gratefully 223 acknowledged. Assistance with EPMA and laser fluorination analyses were provided by G. 224 Moore (University of Michigan) and Mike Spicuzza (University of Wisconsin). The WiscSIMS 225 ion microprobe laboratory is supported by National Science Foundation (EAR-1355590,

10

- 226 1658823) and the University of Wisconsin–Madison. FZP, EMC, CMF and JWD gratefully
- acknowledge financial support from Oberlin College and NSF (EAR-1249778). JWV is
- supported by NSF (EAR-1524336).

229 **REFERENCES CITED**

- 230 Bebout, G. E., 1991, Field-based evidence for devolatilization in subduction zones: implications 231 for arc magmatism: Science, v. 251, p. 413-416.
- 232 Bebout, G. E., and Barton, M. D., 1989, Fluid flow and metasomatism in a subduction zone 233 hydrothermal system: Catalina Schist terrane, California: Geology, v. 17, p. 976-980.
- 234 Bebout, G. E., and Penniston-Dorland, S. C., 2016, Fluid and mass transfer at subduction 235 interfaces-The field metamorphic record: Lithos, v. 240-243, p. 228-258, doi: 236

10.1016/j.lithos.2015.10.007.

- 237 Connolly, J. A. D. (2009) The geodynamic equation of state: what and how: Geochemistry, 238 Geophysics, Geosystems, v. 10:Q10014, doi:10.1029/2009GC002540.
- 239 Cruz-Uribe, A.M., Marschall, H.R., Gaetani, G.A., and Le Roux, V., 2018, Generation of 240 alkaline magmas in subduction zones by partial melting of mélange diapirs-An 241 experimental study: Geology, v. 46, p. 343-346, doi: 10.1130/G39956.1.
- 242 Eiler, J.M., 2001, Oxygen isotope variations of basaltic lavas and upper mantle rocks, in Valley, 243 J.W. and Cole, D.R. eds., Reviews in Mineralogy & Geochemistry Vol. 43: Stable Isotope 244 Geochemistry: Mineralogical Society of America, p. 319-364, 245 https://doi.org/10.2138/gsrmg.43.1.319.
- 246 Eiler, J.M., McInnes, B., Valley, J.W., Graham, C.M., and Stolper, E.M., 1998, Oxygen isotope 247 evidence for slab-derived fluids in the sub-arc mantle: Nature, v. 393, p. 777-781, 248 https://doi.org/10.1038/31679.
- 249 Eiler, J.M., Schiano, P., Kitchen, N., and Stolper, E.M., 2000, Oxygen-isotope evidence for 250 recycled crust in the sources of mid-ocean-ridge basalts: Nature, v. 403, p. 530–534, 251 https://doi.org/10.1038/35000553.
- 252 Friedman, I. and O'Neil, J. R., 1977, Compilation of stable isotope fractionation factors of 253 geochemical interest: U.S. Geological Survey Professional Paper, v. 440-KK.
- 254 Hartley, E.S., Pereira, I., Moreira, H., Page, F.Z., and Storey, C.D., 2016, Petrology and trace 255 element thermometry of garnet-quartzite from the Catalina Schist, Geological Society of 256 America Abstracts with Programs, v.48, n.7. Abst. 258-3.
- 257 Hickmott, D., Sorensen, S. S., and Rogers, P., 1992, Metasomatism in a subduction complex; 258 constraints from microanalysis of trace elements in minerals from garnet amphibolite from 259 the Catalina Schist: Geology, v. 20, p. 347-350.
- 260 King, R. L., Bebout, G. E., Moriguti, T., and Nakamura, E., 2006, Elemental mixing systematics 261 and Sr-Nd isotope geochemistry of melange formation: Obstacles to identification of fluid 262 sources to arc volcanics: Earth and Planetary Science Letters, v. 246, p. 288-304.
- 263 Kolodny, Y., and Epstein, S., 1976, Stable isotope geochemistry of deep sea cherts: Geochimica 264 et Cosmochimica Acta, v. 40, p. 1195-1209.
- 265 Marschall, H.R., and Schumacher, J.C., 2012, Arc magmas sourced from mélange diapirs in subduction zones: Nature Geoscience, v. 5, p. 862-867, doi: 10.1038/ngeo1634. 266
- 267 Martin, L.A., Rubatto, D., Crépisson, C., Hermann, J., Putlitz, B., and Vitale Brovarone, A., 268 2014, Garnet oxygen analysis by SHRIMP-SI: Matrix corrections and application to high-269 pressure metasomatic rocks from Alpine Corsica: Chemical Geology, v. 374-375, p. 25-36, 270 doi: 10.1016/j.chemgeo.2014.02.010.
- 271 Page, F. Z., Ushikubo, T., Kita, N. T., Riciputi, L. R., and Valley, J. W., 2007, High-precision 272 oxygen isotope analysis of picogram samples reveals 2 µm gradients and slow diffusion in
- 273 zircon: American Mineralogist, v. 92, p. 1772-1775.

- Page, F. Z., Kita, N. T., and Valley, J. W., 2010, Ion microprobe analysis of oxygen isotopes in
 garnets of complex chemistry: Chemical Geology, v. 270, p. 9-19.
- Page, F.Z., Essene, E.J., Mukasa, S.B., and Valley, J.W., 2014, A garnet-zircon oxygen isotope
 record of subduction and exhumation fluids from the Franciscan Complex, California:
 Journal of Petrology, v. 55, p. 103–131.
- Payne, J.L., Hand, M., Pearson, N.J., Barovich, K.M., and McInerney, D.J., 2015, Crustal
 thickening and clay: Controls on O isotope variation in global magmatism and siliciclastic
 sedimentary rocks: Earth and Planetary Science Letters, v. 412, p. 70–76, doi:
 10.1016/j.epsl.2014.12.037.
- Penniston-Dorland, S. C., Bebout, G. E., Pogge von Strandmann, P. A. E., Elliott, T., and
 Sorensen, S. S., 2012, Lithium and its isotopes as tracers of subduction fluids and
 metasomatic processes: Evidence from the Catalina Schist, California, USA: Geochimica et
 Cosmochimica Acta, v. 77, p. 530-545.
- Penniston-Dorland, S. C., Gorman, J. K., Bebout, G. E., Piccoli, P. M., and Walker, R. J., 2014,
 Reaction rind formation in the Catalina Schist: Deciphering a history of mechanical mixing
 and metasomatic alteration: Chemical Geology, v. 384, p. 47–61.
- Penniston-Dorland, S.C., Kohn, M.J., and Piccoli, P.M., 2018, A mélange of subduction
 temperatures: Evidence from Zr-in-rutile thermometry for strengthening of the subduction
 interface: Earth and Planetary Science Letters, v. 482, p. 525–535, doi:
 10.1016/j.epsl.2017.11.005.
- Platt, J., 1975, Metamorphic and deformational processes in the Franciscan Complex, California:
 some insights from the Catalina Schist terrane: Bulletin of the Geological Society of
 America, v. 86, p. 1337–1347.
- Rubatto, D., and Angiboust, S., 2015, Oxygen isotope record of oceanic and high-pressure
 metasomatism: a P–T–time–fluid path for the Monviso eclogites (Italy): Contributions to
 Mineralogy and Petrology, v.170:44, p. 1–16, doi: 10.1007/s00410-015-1198-4.
- Russell, A. K., Kitajima, K., Strickland, A., Medaris, Jr, L. G., Schulze, D. J., and Valley, J.W.,
 2013, Eclogite-facies fluid infiltration: constraints from δ¹⁸O zoning in garnet: Contributions
 to Mineralogy and Petrology, v. 165, p. 103-116.
- Spencer, C.J., Cavosie, A.J., Raub, T.D., Rollinson, H., Jeon, H., Searle, M.P., Miller, J.,
 McDonald, B.J., Evans, N.J., and EIMF, 2017, Evidence for melting mud in Earth's mantle
 from extreme oxygen isotope signatures in zircon: Geology, v. 45, p. 975-978, doi:
 10.1130/G39402.1.
- Valley, J. W., 2003, Oxygen isotopes in zircon: Reviews in Mineralogy and Geochemistry, v. 53,
 p. 343-385.
- Vielzeuf, D., Veschambre, M., and Brunet, F., 2005, Oxygen isotope heterogeneities and
 diffusion profile in composite metamorphic-magmatic garnets from the Pyrenees: American
- 311 Mineralogist, v. 90, p. 463–472.
- 312 313

314 FIGURE CAPTIONS

315 Figure 1. A) Geologic sketch map of Santa Catalina Island, California (after Platt, 1975) showing

316 sample locations. B) Polished thick section of a garnet quartzite showing two garnet sizes. (grt1

317 – larger, cation-zoned garnet, grt2 – smaller, garnet crystals, homogeneous in cations, qz-quartz,

318 ru – rutile, ap – apatite, chl – chlorite)

319

320 Figure 2. A) δ^{18} O and cation traverse, rim to rim, of a single ~2.5mm dia. garnet. The core region 321 is generally homogeneous at $\sim 25\%$ (aquamarine points), transitions to intermediate values 322 (orange) and low, $\sim 10\%$ rims (purple) over short intervals, although zoning is asymmetric. 323 Mg/(Mg+Fe) (Mg#, solid line) increases continuously core to rim. B) Ternary diagram of garnet 324 cation compositions, mm-scale garnets are shown as solid circles, ~100µm-scale garnets shown 325 as open circles. Analysis location (core, intermediate, rim) is also correlated with δ^{18} O, and 326 indicated by color, as in A. Larger garnets have greater cation zoning than smaller garnets 327 (dashed arrow), and all oxygen isotope zonation takes place at the most pyrope-rich 328 compositions for both sizes (alm - almandine, pyp – pyrope, grs -- grossular, sps – spessartine). 329 330 Figure 3. Catalina quartzite zircon chemistry and age A) CL images (25µm scale bars) of three 331 zircons showing different CL domains (see text for details). Analysis of δ^{18} O are shown with two 332 spot sizes and labeled with values in VSMOW (~15 μ m, ±0.2-0.4‰ 2S.D., Table DR-5; <1 μ m, ± 333 2.5% 2S.D., Table DR-6). B) Histogram of analyses of zircon and garnet with a 15µm diameter 334 spot from sample 05C-09 grouped by CL domain and/or location across a traverse, colors as in 335 Figure 2.

A

GSA Data Repository Item Methods and Data from Page et al. (2019)

Table of Contents

Methods2
Equilibrium Assemblage Diagram (FIG. DR-1)5
Table DR-1 Garnet δ^{18} O standards and calibration curves8
Figure DR-2 Garnet δ^{18} O standard calibration curve10
Table DR-2 Ion microprobe garnet and quartz $\delta^{18}O$ data11
Figure DR-3 Ion microprobe garnet and quartz $\delta^{18}O$ data14
Table DR-3 Garnet cation composition by electron microprobe15
Table DR-4 Ion microprobe zircon δ^{18} O data (~15 μ m spot)17
Figure DR-4 Ion microprobe zircon δ^{18} O data (~15 μ m spot)19
Table DR-5 Ion microprobe zircon δ^{18} O data (sub- μ m spot)20
Figure DR-5 Ion microprobe zircon δ^{18} O data (sub- μ m spot)21
Table DR-6 SHRIMP zircon U-Pb isotope data22
Table DR-7 SHRIMP zircon trace element data23
Appendix DR-8 Cathodoluminescence images of zircons showing analysis locations24
Figure DR-6 SHRIMP zircon U-Pb and REE analyses49
Appendix DR-9 Back-scattered electron images of garnets showing analysis locations

METHODS

Laser Fluorination

Laser fluorination analyses were performed over two days at the University of Wisconsin – Madison. Samples were crushed by hand to ~500 μ m and 1.5 - 2mg of monomineralic, inclusion-free material was hand-picked under a dissecting microscope, pre-treated overnight in a BrF₅ atmosphere and then heated by CO₂ laser ($\lambda = 10.6 \mu$ m) in the presence of BrF₅. Unknown analyses were standardized against 4 analyses each day of the UWG-2 standard (Valley et al., 1995) and are reported in standard permil notation on the VSMOW scale. The average of the four UWG-2 analyses on day 1 was 5.64±0.11 (2SD) yielding a correction of +0.16‰. The average of the four UWG-2 analyses on day 2 was 5.71±0.15 (2SD) yielding a correction of +0.09‰.

Oxygen isotope analysis of garnet and quartz by ion microprobe

Oxygen isotope analyses of garnet and quartz were performed on the WiscSIMS CAMECA ims-1280 multi-collector ion microprobe at the University of Wisconsin— Madison in two sessions. All garnet and quartz analyses by ion microprobe were measured within 5mm of the center point of 2.54cm round thin sections with garnet (UWG-2; Valley et al., 1995) and quartz (UWQ-1; Kelley et al., 2007) standard materials embedded in the samples and polished to be co-planar with the thin sections. Analysis conditions were the same as described in Kita et al. (2009) and Valley and Kita (2009). A 2–3 nA Cs⁺ primary ion beam (20 kV total accelerating voltage) was focused to a diameter of 10-15 μ m on the gold-coated sample surface. Mass calibrations were performed every 12 hours. Compositionally-dependent bias correction for garnets was performed according to the method of Page et al. (2010). At the start of each analytical session, a bias correction curve was determined by analyses of compositional standards (Table DR-1 and embedded figures, see Page et al., 2010 for more information on the technique and standards used). Ion probe analyses of garnet and quartz are presented in Table DR-2.

Garnet cation compositions (Table DR-3) were determined using the CAMECA SX100 electron microprobe at the University of Michigan using a point beam with 15 kV accelerating voltage and 20 nA beam current. Natural and synthetic silicate and oxide standards were used and a Cameca-type PAP correction was applied. Elemental analyses were made directly adjacent, but more than 5μ m away from to ion probe analysis pits after δ^{18} O analysis.

Instrument stability during analytical sessions was documented by repeated analyses of the UWG-2 (or UWQ-1) standard in groups of four analyses every 10-12 unknown analyses. Each bracket of unknowns is corrected for instrumental bias based on the average of eight bracketing standard analyses without the application of a drift correction. Garnet analyses are additionally corrected for instrumental bias due to chemical differences between the unknown garnets and the UWG-2 standard following the method of Page et al. (2010). The uncertainty of each unknown quartz analysis is

calculated as two standard deviations of the average of the eight standards that bracket a series of unknowns. The precision of garnet analyses is taken as the analytical uncertainty (as calculated for quartz) but with an additional uncertainty for the cation matrix correction of 0.3‰ added in quadrature.

Oxygen isotope analysis of zircon by ion microprobe

Oxygen isotope analyses of zircon were performed on the WiscSIMS CAMECA ims-1280 multi-collector ion microprobe at the University of Wisconsin— Madison in two analytical sessions. Zircons were separated from sample 05C-09 using standard gravimetric and magnetic techniques, mounted in epoxy with the KIM-5 standard (Cavosie et al., 2005) within 5mm of the central point of the 2.54cm diameter mount, and polished until an approximately equatorial section was exposed. Zircons were imaged using panchromatic cathodoluminescence (CL) at the University of Wisconsin-Madison. For the first analytical session, analysis conditions and technique were as reported above for garnet and quartz, with standardization and analytical uncertainty measured using the KIM-5 zircon standard. Zircons were analyzed using the same surface as SHRIMP pits (see next section) Standard and unknown data are presented in Table DR-5. After analysis, pit morphology was examined using secondary electron imaging, and a new sample surface was exposed by hand polishing. A single zoned zircon was selected for sub-micron pit-size analysis and reimaged in CL.

Sub-micron pit oxygen isotope analyses were made at WiscSIMS using the same technique as Page et al. (2007) with the exception that all zircon analyses were normalized using standard KIM-5 (Valley et al., 2003; Cavosie et al., 2005). Analysis setup followed the same protocols as described above, with the following exceptions: the primary ion beam was focused to smaller than 1 μ m, confirmed by imaging of a calibrated Si wafer. Because ion probe pits are generally longer in the X-direction (in the plane of both the primary and secondary ion beams) the sample was inserted so that planned traverses would be in the Y-direction, allowing for the highest spatial resolution. Secondary electron images of the pits show pit dimensions of 600 nm x 900 nm with a shallow halo of ~1.5 x 2 μ m due to primary beam aberration. The intensity of ¹⁶O was (1-2) x10⁶ cps, depending on the primary beam intensity, which ranged from 2 to 1 pA over the analytical session. ¹⁸O was measured using a miniaturized Hamamatsu electron multiplier (EM) in the multicollector. The dead time of the detector is estimated to be 68ns, which is very close to the hardware setting of the counting system. The pulse height distribution of the EM detector was adjusted to peak at 280mV before the KIM5 standard analyses and was not changed during the session because relatively lower ¹⁸O ion currents (2,000-4,000 cps) are unlikely to cause aging of the EM detector during a single day of analyses. The use of an EM/FC configuration for these analyses results in rather different raw δ^{18} O values than those measured using the FC/FC configuration of the 7 and 10 μ m analyses as would be predicted based on the different properties of these detectors. Total analytical time per spot was about 24 minutes

including pre-sputtering (360 sec), automatic retuning of the secondary beam (ca. 60 sec), and analysis (1000 sec).

Uranium-lead isotope and trace element analysis of zircon by ion microprobe

Analysis of U-Pb isotopes and trace elements (Th, U, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb, Hf) were conducted in one session at the Stanford University/USGS SHRIMP-RG ion microprobe using the same epoxy mount described in the section above. Analyses were guided by CL, and standardized to zircons R33 and CZ3, and followed the methods described in Gilotti et al. (2011). Data were reduced using the software SQUID and ISOPLOT (Ludwig, 2001,2003).

EQUILIBRIUM ASSEMBLAGE MODELLING

An equilibrium assemblage diagram (EAD) was constructed for the sample in the MnCFMASHT system using Perple_X v. 6.6.8 (Connolly, 2009). The modelled bulk composition was determined by collecting 75 low-magnification back-scattered electron images uniformly distributed across the thin section. Mineral modes were determined using image analysis software and bulk composition. K₂O and Na₂O contents were negligible and were excluded from the model. The bulk composition (SiO₂ 96.1, TiO₂ 0.1, Al₂O₃ 1.4, FeO 1.4, MnO 0.2, MgO 0.6, CaO 0.2, wt.%) was corrected to exclude CaO found in apatite. SiO₂ and H₂O were modeled as saturated components. We used solution models Gt(HP), Chl(HP), Cpx(HP), Opx(HP), Pheng(HP), cAmph(DP2), oAmph(DP), IIGkPy and melt(HP) and the thermodynamic data file hp02ver.dat (Holland and Powell, 1998). The resulting EAD (Fig. DR-1) matches observed mineralogy with the exception of the prediction of trace kyanite in all fields, and is likely an artifact of error in the estimation of bulk composition. The peak metamorphic assemblage of gz+grt+ru±chl spans a large range of P-T space, but is consistent with existing estimates of peak metamorphic conditions (10-15kbar, 650-700°C) on Catalina based on thermobarometry of amphibolite blocks (Sorensen and Barton, 1987). A lower pressure limit of 8kbar is based on rutile (rather than ilmenite) stability is predited by the model. Compositional isopleths show that large garnets record increasing prograde temperatures of 600°-650°, with small garnets forming at the high end of that pressure range. The high-Mg garnet isopleths are at the high T end of the chlorite-bearing field, consistent with the small modal content of chlorite. Garnet of the composition found in this sample is predicted by the model not to form in the presence of rutile below ~14 kbar, and providing a minimum estimate of pressure. Despite the evidence of substantial late fluids resetting oxygen isotopes in guartz, these P-T estimates are broadly consistent with previous estimates (Sorensen and Barton, 1987), and are within ~75°C of [Zr] in rutile thermometry of both similar lithologies and garnet hornblende blocks on Catalina (Hartley et al., 2016; Penniston-Dorland et al., 2016). If the bulk composition of this block was shifted by late fluid metasomatism, then it was likely minimal given these P-T results.

Figure DR- 1 Equilibrium Assemblage Diagram for Catalina Quartzite 05C-09. The peak metamorphic assemblage is $qz + gt + ru \pm chl$, and is shown in blue. A low P limit is established by the stability field of rutile. Garnet isopleth thermometry is shown for large and small garnets as green arrows. Given the inherent uncertainties in thermobarometry and the late metasomatic history of the rock, the diagram is conservatively interpreted to show garnet growth during prograde heating of the sample. [Zr] in rutile thermometry range is from Hartley et al. (2016).

References

- Cavosie, A.J., Valley, J.W., Wilde, S.A., and EIMF, 2005, Magmatic δ¹⁸O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean: Earth and Planetary Science Letters, v. 235, no. 3-4, p. 663–681.
- Connolly, J.A.D., 2009, The geodynamic equation of state: What and how: Geochemistry Geophysics Geosystems, v. 10, p. Q10014, doi: 10.1029/2009GC002540.
- Gilotti, J.A., and McClelland, W.C., 2011, Geochemical and Geochronological Evidence That the North-East Greenland Ultrahigh-Pressure Terrane Is Laurentian Crust: Journal of Geology, v. 119, no. 5, p. 439–456, doi: 10.1086/660867.
- Hartley, E.S., Pereira, I., Moreira, H., Page, F.Z., and Storey, C.D., 2016, Petrology and trace element thermometry of garnet-quartzite from the Catalina Schist: Geological Society of America Abstracts with Programs, v. 48, no. 7, Abstract 258–3, doi: 10.1130/abs/2016AM-282181.
- Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309– 343.
- Kita, N.T., Ushikubo, T., Fu, B., and Valley, J.W., 2009, High precision SIMS oxygen isotope analysis and the effect of sample topography: Chemical Geology, v. 264, no. 1-4, p. 43–57, doi: 10.1016/j.chemgeo.2009.02.012.
- Kelly, J.L., Fu, B., Kita, N.T., and Valley, J.W., 2007, Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe: Geochimica et Cosmochimica Acta, v. 71, p. 3812–3832, doi: 10.1016/j.gca.2007.05.014.
- Ludwig, K.R., 2001, Squid 1.02: a user's manual: Berkeley Geochronology Center Special Publication No. 2, Berkeley, California.
- Ludwig, K.R., 2003, Users manual for ISOPLOT/EX, version 3. A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication No. 4, Berkeley, CA.
- Page, F.Z., Kita, N.T., and Valley, J.W., 2010, Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry: Chemical Geology, v. 270, no. 1-4, p. 9–19, doi: 10.1016/j.chemgeo.2009.11.001.
- Page, F.Z., Ushikubo, T., Kita, N.T., Riciputi, L., and Valley, J.W., 2007, High-precision oxygen isotope analysis of picogram samples reveals 2 μ m gradients and slow diffusion in zircon: American Mineralogist, v. 92, no. 10, p. 1772–1775.
- Penniston-Dorland, S.C., Kohn, M.J., and Piccoli, P.M., 2016, A mélange of subduction temperatures: Zr-in-rutile thermometry of the Catalina Schist: Goldschmidt Abstracts, p. 2465.
- Sorensen, S.S., and Barton, M., 1987, Metasomatism and Partial Melting in a Subduction Complex - Catalina Schist, Southern-California: Geology, v. 15, no. 2, p. 115–118.

Valley, J.W., 2003, Oxygen isotopes in zircon, *in* Reviews in Mineralogy & Geochemistry Vol. 53 Zircon, p. 343–385.

Valley, J.W., and Kita, N.T., 2009, In situ oxygen isotope geochemistry by ion microprobe: Mineralogical Association of Canada Short Course 41, p. 19-61.

Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C., and Spicuzza, M.J., 1995, UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating: Geochimica et Cosmochimica Acta, v. 59, no. 24, p. 5223–5231.

TABLE DR-1. δ^{18} O analyses of garnet compositional standards by ion microprobe

Analysis Number	Spot name	δ ¹⁸ O VSMOW ‰	Average δ ¹⁸ O Raw ‰	2SD	Average bias ‰	Average bias rel. UWG-2 ‰	‰	Internal precision ‰
sample: WI-STD-24								
4	UWG-2 (yield, background	I and dead time are un	checked)				112.14	0.27
2	UWG-2						8.83	0.25
3	UWG-2						8.64	0.20
4	UWG-2						9 17	0.25
5	LIWG-2						8 73	0.29
e	LIMG 2						9 70	0.20
7	000-2						0.70	0.55
7	UWG-2						0.97	0.26
8	UWG-2						8.78	0.22
9	UWG-2						8.80	0.23
10	UWG-2						9.03	0.33
		5.80	8.85	0.35	3.03	—		
11	UWG-2						9.54	0.11
12	UWG-2						9.41	0.16
13	UWG-2						9.46	0.25
14	UWG-2						9.45	0.20
15	UWG-2						9.32	0.21
16	UWG-2						9.32	0.11
		5.80	9.41	0.17	3.59	_		
17	GrsSe						10.13	0.19
18	GrsSe						10.32	0.21
19	GrsSe						10.02	0.19
30	Grade						10.17	0.16
20	GISSE	2.90	10.01	0.17	6.20	2.05	10.23	0.20
21	D-1500	3.60	10.21	0.17	0.39	2:95	44.04	0.00
21	Balsus						14.81	0.22
22	Bai509						14.70	0.20
23	Bal509						20.01	0.33
24	Bal509						14.84	0.21
25	Bal509						14.92	0.24
		12.30	14.82	0.19	2.49	-0.94		
26	UWG-2						9.30	0.19
27	UWG-2						9.06	0.24
28	UWG-2						9.21	0.21
29	UWG-2						8.94	0.20
		5.80	9.12	0.32	3.31	_		
	bracket	5.80	9.25	0.39	3.43	_		
30	SpeSe						7.92	0.22
31	SpeSe						8.08	0.16
32	SpeSe						8.08	0.16
33	SpeSe						8.22	0.16
		5.40	8.07	0.24	2.66	-0.68		
34	PvDM						8 09	0.20
35	PvDM						8 35	0.15
36	PyDM						8.21	0.21
30	T yDM						0.21	0.21
51	FyDivi	E 60	0.00	0.00	2.61	0.73	0.20	0.21
20	111/0 0	5.60	0.23	0.22	2.01	-0.73	0.40	0.40
38	UWG-2						9.13	0.16
39	UWG-2						9.33	0.17
40	UWG-2						9.21	0.23
41	UWG-2						9.14	0.20
		5.80	9.20	0.18	3.38	—		
	bracket	5.80	9.16	0.26	3.34	_		
sample: WI-STD-23								
42	UWG-2						10.58	0.14
43	UWG-2						10.43	0.17
44	UWG-2						10.45	0.15
45	UWG-2						10.42	0.19
46	UWG-2						10.25	0.17
47	UWG-2						10.40	0.18
		5.80	10.38	0.18	4.55	_		
48	13-63-21						9,41	0.17
10	13-63-21						9.60	0.18
50	12 62 24						0.35	0.16
50	10 00 04						0.24	0.10
51	13-03-21						5.24	0.24

TABLE DR-1 (CONTINUED). δ ¹⁸ 0 ANAL	YSES OF GARNET COM	POSITIONAL STANDA	RDS BY ION MICROPI	ROBE
		T180 VOMON/	A	

Analysis Number	Spot name	δ ¹⁸ O VSMOW ‰	Average δ ¹⁸ O Raw ‰	2SD	Average bias ‰	Average bias rel. UWG-2 ‰	δ ¹⁸ O Raw ‰	Internal precision ‰
52	UWG-2						10.56	0.22
53	UWG-2						10.39	0.23
54	UWG-2						10.34	0.15
55	UWG-2						10.59	0.21
		5.80	10.47	0.24	4.64	-		
	bracket	5.80	10.43	0.22	4.60	-		
56	13-36-20						10.15	0.18
57	13-36-20						10.01	0.18
58	13-36-20						10.13	0.18
59	13-36-20						10.03	0.20
		6.14	10.08	0.14	3.91	-0.68		
60	UWG-2						10.40	0.23
61	UWG-2						10.53	0.23
62	UWG-2						10.19	0.17
63	UWG-2						10.44	0.23
		5.80	10.39	0.28	4.56	-		
	bracket	5.80	10.43	0.26	4.60	-		

sample: WI-STD-70								
 64	epoxy				on epoxy		-33.66	3.52
65	UWG-2						8.98	0.20
66	UWG-2						9.00	0.22
67	UWG-2						8.92	0.24
68	UWG-2						8.85	0.24
 69	UWG-2						8.78	0.25
sample: WI-STD-23								
70	UWG-2						9.40	0.20
71	UWG-2						9.19	0.18
72	UWG-2						9.24	0.22
73	UWG-2						9.20	0.23
74	UWG-2						9.19	0.21
75	UWG-2						9.28	0.19
		5.80	9.23	0.09	3.41	-		
76	13-63-21						9.17	0.22
77	13-63-21						9.16	0.22
78	13-63-21						9.08	0.16
79	13-63-21						9.07	0.18
		4.55	9.12	0.11	4.55	1.17		
80	UWG-2						9.16	0.23
81	UWG-2						9.25	0.19
82	UWG-2						9.01	0.22
83	UWG-2						9.23	0.19
		5.80	9.16	0.21	3.34	-		
84	bracket	5.80	9.19	0.17	3.37	-	0.00	0.40
85	UWG-2						0.99	0.18
86	UWG-2						0.90	0.17
87	UWG-2						0.03	0.19
Analysis Number	Spot name	δ ¹⁸ O VSMOW ‰	Average δ ¹⁸ O Raw ‰	2SD	Average bias ‰	Average bias rel. UWG-2 ‰	5.07 δ ¹⁸ Ο Raw ‰	Internal precision ‰
		5.80	8.95	0.21	3.13	-		
88	R-53						11.25	0.23
89	R-53						11.18	0.20
90	R-53						11.22	0.22
91	R-53						11.27	0.18
00		5.33	11.23	0.08	5.87	2.65		
92	UWG-2						9.23	0.18
93	UWG-2						9.16	0.16
94	UWG-2						9.13	0.27
30	UWG-2						8.93	0.24
		5.80	9.11	0.26	3.29	-		
	bracket	5 80	9.03	0.28	3.21	_		

TABLE DR-1 (CONTINUED). 5180 ANALYSES OF GARNET COMPOSITIONAL STANDARDS BY ION MICROPROBE

SUMMARY BIAS DATA FOR	GARNET STANDARDS	
Standard	Mole Fraction Grossular	Bias Relative to UWG-2
GrsSE	0.94	2.95
Bal509	0.03	-0.94
UWG-2	0.14	0
SpsSE	0	-0.68
PypDM	0	-0.73
13-63-21	0.31	1.17
R-53	0.6	2.65

Fig. DR-2 Calibration curve for compositional correction of SIMS garnet analyses

TABLE DR-2. $\delta^{18}O$ ANALYSES OF CATALINA QUARTZITE GARNETS AND QUARTZ BY ION MICROPROBE $\delta^{18}O~_{90}~~2~S.E.$

Analys

is Numbe	Spot name	VSMOW	UWG-2 bracket						
r				Raw	measurement	Alm	Рур	Sps	Grs
sample									
Calibra									
curve:									
	a = -4.267 b = 8		-0.8976						
93	UWG2			8.918	0.203				
94	UWG2			8.895	0.141				
95	UWG2			8.931	0.214				
96	UWG2			8.931	0.188				
	average		0.03	8.919					
07	05C09aOBg1_1	26.00	0.19	20.250	0.109	E4 E2	24.69	0.60	10.10
97	_05C09aOBq1 2	20.09	0.16	29.200	0.196	54.52	24.00	0.02	12.10
98	_rim	10.16	0.18	13.213	0.169	53.59	27.96	7.24	11.21
99	05C09aOBg1_3	15.09	0.18	18.108	0.177	53.82	27.81	7.84	10.54
100	05C09aOBg1_4	24.56	0.18	27.694	0.165	53.59	26.41	8.20	11.79
101	05C09aOBg1_5	17.98	0.18	21.060	0.274	53.98	26.79	7.91	11.32
102	05C09aOBg1_6	17.53	0.18	20.470	0.203	54.09	28.43	8.01	9.47
103	05C09aOBg1_7	14.97	0.18	18.026	0.158	54.12	27.38	7.37	11.13
104	05C09aOBg1_8	10.27	0.18	13.251	0.252	54.07	27.98	7.73	10.22
105	05C09aOBg1_9	10.35	0.18	13.330	0.187	54.13	28.04	7.52	10.31
106	0	26.07	0.18	29.214	0.183	54.99	24.58	8.65	11.78
107	UWG2			8.854	0.205				
108	UWG2			8.853	0.161				
109	UWG2			8.659	0.247				
110	UWG2			8.937	0.236				
	average		0.24	8.826					
	bracket 93-96, 10	7-110	0.18	8.872					
111	05C09aOBg1_11	10.36	0.18	13.339	0.188	53.37	28.56	7.69	10.38
112	05C09aOBg1_12	10.21	0.18	13.184	0.196	53.99	28.33	7.32	10.36
113	05C09aOBg1_13	17.24	0.18	20.261	0.159	54.24	27.43	7.61	10.72
114	05C09aOBg1_14	26.15	0.18	29.323	0.130	53.64	25.94	8.01	12.42
115	05C09aOBg1_15	26.15	0.18	29.315	0.186	55.06	24.56	8.11	12.27
116	05C09aOBg1_16	26.07	0.18	29.215	0.179	54.38	25.34	8.23	12.06
117	05C09aOBg1_17	24.59	0.18	27.732	0.190	53.20	26.58	8.22	11.99
118	05C09aOBg1_18	19.71	0.18	22.754	0.186	53.75	27.29	8.10	10.86
119	05C09aOBg1_19	17.54	0.18	20.659	0.177	53.81	26.21	7.95	12.03
120	05C09aOBg1_20	14.94	0.18	12 245	0.218	54.54	28.07	7.50	9.90
121	000000000001_21	10.25	0.10	13.213	0.102	54.52	20.12	7.50	10.20
122	UWG2			8.902	0.211				
123	UWG2			8.943	0.175				
124	UWG2			8.877	0.136				
125	UWG2			8.867	0.137				
	average		0.07	8.897					
	bracket 107-110,	122-125	0.18	8.862					
126	05C09aOBg1b_b	25.58	0.11	28.602	0.194	54.99	27.19	7.48	10.35
127	05C09aOBg1b_b	10.51	0.11	13.474	0.157	53.63	28.53	7.60	10.23
128	05C09aOBg1b_b	17.83	0.11	20.850	0.168	53.86	28.24	7.33	10.56
129	05C09aOBg1b_b	10.36	0.11	13.349	0.164	53.86	28.24	7.33	10.56
130	U5C09aOBg1b_b	20.03	0.11	23.089	0.198	53.45	27.92	7.59	11.05
131	05C09aOBg1b_b	10.18	0.11	13.214	0.199	53.58	27.96	7.27	11.18
132	05C09aOBg1_22	10.20 26.19	0.11	13.25/	0.163	04.00 53.26	21.01	1.40	10.58
133	05C09aOBg1_23	20.10	0.11	13 200	0.165	53.20	20.04	7.55	12.10
134	05C09aOBg1_24	10.20	0.11	13 269	0.149	53.74	28.30	7.55	10.03
136	05C09aOBq1_25	26.18	0.11	20 313	0.161	54.45	24.87	8.86	11.82
137	05C09aOBg1_20	26.10	0.11	29.313	0.232	53.68	24.07	8.59	11.02
138	05C09aOBq1_28	17.86	0.11	20.834	0.191	53.95	27.75	8.32	9 98
139	05C09aOBq1_20	26.17	0.11	29.332	0.171	55.06	24.56	8.11	12.27
	0 _								
140	UWG2			8.898	0.149				
141	UWG2			8.797	0.172				
142	UWG2			8.786	0.208				
143	UWG2			8.827	0.124				
	average		0.10	8.827					
	bracket 122-125,	140-143	0.11	8.862					
144	05C09aOBg2_1	26.13	0.19	29.248	0.229	54.72	24.69	8.91	11.68
145	05C09aOBg2_2	21.92	0.19	25.022	0.216	55.13	24.48	8.82	11.57
146	05C09aOBg2_3	10.02	0.19	13.008	0.251	53.59	28.54	7.38	10.49
147	05C09aOBg2_4	10.26	0.19	13.256	0.174	53.01	28.64	7.72	10.63
148	05C09aOBg2_5	24.44	0.19	27.580	0.151	54.87	25.08	8.05	12.00
149	05C09aOBg2_6	17.88	0.19	20.921	0.107	54.47	26.59	7.97	10.98
150	05C09aOBg2_7	17.16	0.19	20.272	0.123	54.66	25.58	7.78	11.97
151	USCU9aOBg2_8	14.58	0.19	17.543	0.178	54.31	28.09	7.62	9.98
152	nachaaORd578	20.80	U.19	20.942	0.163	54.06	25.20	0./6	11.98

TABLE DR-2 (CONTINUED), $\delta^{18}O$ ANALYSES OF CATALINA QUARTZITE GARNETS AND QUARTZ BY ION MICROPROBE $\delta^{18}O$ ‰ 2 S.D. $\delta^{18}O$ ‰ 2 S.E.

Analys		0 0 /00	2 0.5.	0 0 /00	2 0.2.				
is	Spot name	VSMOW	UWG-2 bracket						
Numbe				D		A1	P	0	0
153	05C002ORd2 10	10.61	0.10	13 620	neasurement	AIM 53.71	27.66	5ps	10.80
153	05C09aOBg2_10	26.06	0.19	20 170	0.192	53.71	27.00	7.75	10.89
155	05C09aOBg2_11	21.82	0.19	24 814	0.104	54.35	26.98	8.50	10.17
156	05C09aOBg2_12	24.76	0.19	27 894	0.145	54.36	25.64	8 13	11.87
100	000000000000000000000000000000000000000	24.70	0.15	21.004	0.140	04.00	20.04	0.10	11.07
157	UWG2			8.908	0.160				
158	UWG2			8.799	0.133				
159	UWG2			9.058	0.165				
160	UWG2			8.777	0.203				
	average		0.26	8.886					
	bracket 140-143,	157-160	0.19	8.860					
sample	: 05C-09aUW								
216	05C9aUW UWG2			8.825	0.168				
217	05C9aUW UWG2			8.706	0.157				
218	05C9aUW UWG2			8.535	0.221				
219	05C9a0W 0WG2		0.00	8.581	0.187				
	average		0.26	8.002					
220	0500011W/11W/C2		0.30	8 770	0.233				
220	0509200000002	10.04	0.30	12 992	0.235	53 37	28.10	7.93	10.61
221	05C9aUWg2_1	10.04	0.30	12.002	0.210	53.37	20.13	8.06	10.55
222	05C9aUW/d1_1	11 02	0.30	13.104	0.122	54.85	26.11	7 01	10.39
220	05C9aLIW/r1 2	10.37	0.30	13 226	0.125	53.56	27.56	7 0.9	10.35
224	05C9aUW/g1_2	23.62	0.30	26 479	0.160	55.90	15 94	17.88	10.09
226	05C9aUWg1_4	24.71	0.30	27.504	0.211	57.69	21.11	11.80	9.41
227	05C9aUWo1 5	24.63	0.30	27.384	0.138	57.12	23.26	10.77	8.85
228	05C9aUWo1 6	17.76	0.30	20.668	0.154	54.31	25.22	9.26	11.21
229	05C9aUWq1 7	18.03	0.30	20.919	0.177	53.89	26.25	9.02	10.85
230	05C9aUWq1 8	18.23	0.30	21.084	0.228	53.60	27.26	8.69	10.45
231	05C9aUWg1_9	15.60	0.30	18.447	0.172	54.08	27.09	8.39	10.44
232	05C9aUWg1_10	10.17	0.30	13.017	0.207	54.41	27.20	7.73	10.67
233	05C9aUW-UWG2			8.521	0.184				
234	05C9aUW-UWG2			8.859	0.191				
235	05C9aUW-UWG2			8.774	0.216				
236	05C9aUW-UWG2			8.901	0.233				
	average		0.34	8.764					
	bracket 216-219,	233-236	0.30	8.713					
237	05C9aUWg1_11	24.64	0.28	27.591	0.242	56.47	19.22	13.54	10.78
238	05C9aUWg1_12	24.54	0.28	27.493	0.144	56.16	16.46	16.67	10.72
239	05C9aUWg1_13	24.74	0.28	27.613	0.145	57.20	22.14	10.99	9.68
240	05C9a0Wg1_14	24.00	0.28	27.414	0.168	57.00	22.39	10.65	0.07
241	05C9a0Wg1_15	24.07	0.28	21.401	0.130	56.65	21.99	10.22	0.00
242	05C9aUWg1_10	17.75	0.20	20.270	0.140	54.40	25.54	8.02	11 10
243	05C9aUWg1_17	18.00	0.20	20.717	0.100	53.86	25.55	9.21	11.19
245	05C9aUWg1_19	17.86	0.28	20 793	0.173	54.86	25.65	8 79	10.69
246	05C9aUWg1_20	25.73	0.28	28.531	0.195	56.28	25.36	9.65	8.72
247	05C9aUWg1_21	24.85	0.28	27 772	0.205	54.97	25.00	9.69	10.28
248	05C9aUWq1 22	24.72	0.28	27.590	0.211	56.70	21.45	12.14	9.70
249	05C9aUWg1 23	24.49	0.28	27.307	0.118	58.19	20.72	12.16	8.93
250	05C9aUWg1_24	24.78	0.28	27.504	0.160	58.53	21.61	12.09	7.77
251	05C9aUW-UWG2			8.611	0.182				
252	05C9aUW-UWG2			8.906	0.180				
253	05C9aUW-UWG2			8.857	0.164				
254	05C9aUW-UWG2			8.710	0.170				
	average		0.27	8.771					
	bracket 233-236,	251-254	0.28	8.767					
055	0500-1104-4 05	00.00	0.00	00.050	0.450	50.00	00.50	40.00	0.64
255	05C9aUWg1_25	20.09	0.23	22.950	0.156	56.92	20.50	12.96	9.61
200	05C0allWa1_26	24.13	0.23	21.023	0.197	09.0Z	10.10	12.20	9.03
201	050020110/21	24.02	0.20	21.000	0.171	50.51	10.09	12.94	0.00
200	05C9aUWg1_28	24.39	0.23	27 354	0.129	57.35	21.64	11 98	9.03
260	05C9aUW/d1 30	24.55	0.23	27 565	0.162	59.10	19.58	12 32	9.00
260	05C9aLIWrd 31	24.68	0.23	27 360	0.135	60.68	19 77	12.02	7 27
262	05C9aUW/d1 32	24.00	0.23	27 232	0.168	59.06	19.03	12.25	9.46
263	05C9aUWrd 33	24.57	0.23	27.541	0.182	56.76	19.88	12.41	10.95
264	05C9aUWo1 34	24.54	0.23	27.407	0.225	59.40	15.86	15.20	9.54
265	05C9aUWo1 35	24.73	0.23	27.546	0.202	60.40	18,25	12,49	8.86
266	05C9aUWg1_36	23.71	0.23	26.536	0.201	59.84	19.11	12.05	9.00
267	05C9aUWo1 37	24.37	0.23	27.181	0.172	59.53	19.92	11.73	8.83
268	05C9aUWa1 38	21.31	0.23	24.124	0.182	57.54	21.34	12.19	8.94
269	05C9aUWa1 39	10.03	0.23	12.939	0.146	53.79	27.82	7.69	10.70

TABLE DR-2. δ ¹⁸ O ANALYS	ES OF CATAL	INA QUARTZ	ITE GARNET	IS AND QUARTZ BY ION MICROPROBE
	δ ¹⁸ Ο ‰	2 S.D.	δ ¹⁸ Ο ‰	2 S.E.
Analys				

is	Spot name	VSMOW	UWG-2 bracket						
numbe				Raw	measurement	Alm	Pvp	Sne	Gre
270	05C9aUW UWG2			8 6 1 4	0 206		1.36	opa	013
271	05C9aUW_UWG2			8.838	0.154				
272	05C9aUW_UWG2			8.798	0.196				
273	05C9aUW_UWG2			8.843	0.173				
	average		0.22	8.773					
	bracket 251-254, 2	270-273	0.23	8.772					
274	05C9aUWg2_3	25.06	0.15	28.083	0.136	53.83	25.91	8.72	11.53
275	05C9aUWg2_4	25.35	0.15	28.422	0.257	53.34	26.10	8.43	12.13
276	05C9aUWg2_5	25.33	0.15	28.371	0.192	52.31	26.98	8.94	11.76
277	05C9aUWg2_6	17.75	0.15	20.779	0.209	53.12	26.68	8.25	11.95
278	05C9aUWg2_7	17.96	0.15	20.862	0.198	53.79	28.40	7.71	10.09
279	05C9aUWg2_8	10.14	0.15	13.063	0.152	53.05	28.31	7.96	10.68
280	05C9aUWg2_9	10.15	0.15	13.023	0.197	53.80	28.37	7.80	10.03
281	05C9aUWg2_10	12.80	0.15	15.736	0.261	52.92	28.07	8.20	10.81
282	05C9aUWg2_11	26.29	0.15	29.399	0.158	52.37	26.55	8.51	12.57
283	05C9aUWg2_12	25.86	0.15	28.941	0.185	52.84	26.04	8.78	12.33
284	05C9aUWg2_13	20.82	0.15	23.679	0.187	53.89	28.34	8.34	9.43
285	05C9aUWg2_14	18.01	0.15	20.838	0.145	54.57	28.70	7.61	9.12
286	05C9aUWg2_15	10.24	0.15	13.121	0.111	53.34	28.54	7.90	10.22
287	05C9aUWg1_40	18.62	0.15	21.528	0.168	53.70	25.98	10.16	10.16
288	05C9aUWg1_41	17.71	0.15	20.632	0.192	53.76	26.78	9.03	10.43
289	05C9aUWg1_42	10.12	0.15	13.056	0.173	52.88	28.00	8.21	10.91
290	05C9aUWg1_43	20.53	0.15	23.275	0.204	56.29	22.74	13.04	7.93
204	0500-184/184/00			0.745	0.470				
291				8.745	0.179				
202	05C9aUW_UWG2			9.914	0.223				
293	05C9aUW_UWG2			8 750	0.177				
204	average		0.09	8 787	0.150				
	bracket 270-273.	291-294	0.15	8.780					
295	05C9aUW_UWQ1			6.722	0.191				
296	05C9aUW_UWQ1			6.750	0.165				
297	05C9aUW_UWQ1			6.745	0.222				
298	05C9aUW_UWQ1			6.658	0.219				
	average		0.08	6.719					
299	05C9aUWg2-q1	15.35	0.17	9.768	0.145				
300	05C9aUWg2-q2	15.25	0.17	9.676	0.158				
301	05C9aUWg2-q3	15.22	0.17	9.642	0.121				
302	05C9aUWg2-q4	13.75	0.17	8.178	0.144				
303	05C9aUWg1-q1	13.81	0.17	8.242	0.190				
304	05C9aUWg1-q2	15.54	0.17	9.958	0.161				
305	05C9aUWg1-q3	16.22	0.17	10.639	0.120				
306	05C9aUWg1-q4	10.00	0.17	10.100	0.223				
307	05C9aUWg1-q5	14.43	0.17	8.600	0.221				
300	05C9aUWg1-q0	14.13	0.17	9 901	0.131				
310	05C9aUW-mtx o S	13.52	0.17	7.951	0.239				
010		10.02	0.17		0.200				
311	05C9aUW-UWQ-1			6.845	0.154				
312	05C9aUW-UWQ-1			6.843	0.158				
313	05C9aUW-UWQ-1			6.902	0.138				
314	05C9aUW-UWQ-1			6.678	0.139				
	average		0.19	6.817					
	bracket 295-298, 3	311-314	0.17	6.768					

🔶 UWQ1

🔶 garnet

1019 1017 1017 1017 1017 1017 1017 1017	gi Baby	Sample: 05C-09aOB	1772 1079 784 644 644 1327 1327 151 151 93	1802	2194 2412 2544 2603 2663 2461 2485	17 2662 1422 1957 2503 2503 2503 2626 2642 2642 2642 2642 2645 2645 1657	841 841 275 385 135 171 179 179 820 820	Sample: 05C-09aUW g2	traverse distance (microns)
97 & 98 99 100 101 102 103 104 105 105 105 105 105 105 105 105 105 105	127 130 126 128 & 129 131		2257 2257 2258 2260 2265 2265 2265 2265 2265 2265 2265	250	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222 222 222 222 222 222 222 222 232 232	222 222 275 275 277 277 277 277 277 277	1	SIMS spot
85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 63		5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 8 7 6 5 4 3 0 2 1 0 2 8 7 6 5 4 3 0 2 1	4038	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	16 22 22 24 22 24 28 28	3 4 3 7 7 7 0 0 0 7 0 5 4 3 N 1		eProbe #
37.35 37.35 37.37 37.21 37.21 37.21 37.22 37.22 37.22 36.89 37.22 36.89 37.22 36.89 37.25 36.89 37.25 37.25 37.25 37.35	37.42 37.68 37.61 37.99		37.45 37.46 37.66 37.66 37.66 37.70 37.70 37.70 37.26 37.26 37.26 37.26 37.26 37.28 37.28 37.28 37.28 37.28 37.89	37.63 37.30	37.67 37.52 37.52 37.52 37.61 37.69 37.69 37.69 37.69 37.69	38.19 36.82 37.25 37.81 37.81 37.91 37.91 37.91 37.91 37.91 37.91 37.91 37.81 37.81	38.05 37.48 37.48 37.92 38.210	2	SiO2
0.10 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.0	0.04 0.13 0.01 0.04		-0.01 -0.02 -0.02 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.05 -0.07 -0.05 -0.07 -0.05 -0.07 -0.05	0.02	0.02 0.10 0.12 0.12 0.12 0.16	0.06 0.12 0.15 0.12 0.12 0.12 0.12 0.01 0.01 0.01 0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2	TiO2
20.99 21.51 21.51 21.23 20.23 21.23 21.23 21.23 21.24 21.42 21.42 21.42 21.42 21.42 21.42 21.93 21.45 21.93 21.95 20.95 21.95	21.61 20.97 21.23 21.41 21.44	-	20080 21080 21080 212080 212080 20071 20080 20071 200800 20080 20080 20080 20080 20080 200	20.67 21.10 20.62	21.00 21.03 21.04 21.14 21.14 21.14 21.14 21.18	21.58 21.36 20.47 20.96 21.03 21.96 21.17 21.53 21.59 20.50 20.50	21.56 21.56 21.56 21.17 21.25 21.21 21.21 21.21 21.21 21.21 21.43 21.43 21.43 21.44 21.43	1	AI2O3
	0.00 0.00 0.00			0.00				5	Cr203
25.53 25.53 25.53 25.53 25.55 25.55 25.56 25.58 25.58 25.58 25.54 25.58 25.54 25.555 25.54 25.555 25.5555 25.5555555555	25.47 25.41 25.08 25.16		277 99 277 99 277 99 277 99 277 99 277 97 277 97 277 277 97 277 97 277 97 277 277 97 2	27.34 27.34	27.11 27.20 25.53 25.53 25.53 25.61 25.61 25.61	25.41 25.28 26.80 26.81 26.81 25.75 25.75 25.75 25.75 25.33 25.33 25.48 25.87 25.87 25.87 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.84 25.88 25.84 25.88 25.84 25.88 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.78 25.75	25.25 25.26 25.20 25.20 25.21 25.21 25.21 25.22 25.23 25.25 25.05 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.20 25.21 8 25.21 25.20 25.21 25.20 25.21 25.20 25.21 25.25 25.21 25.25 25.21 25.25 25.21 25.25 25.21 25.25 25.55 25.5))	FeO
4.00 3.64 3.64 3.64 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67	3.57 3.56 3.52 3.37 3.37		6.024 6.025 6.026	5.58	5.02 5.09 4.12 4.14 4.14 4.15 5.61	3.62 3.72 3.72 3.72 3.94 4.25 3.94 4.25 3.55 3.55 5.59	3.65 3.67 3.67 3.64 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.57 3.67	1	MnO
6.51 7.34 7.34 7.34 7.34 7.34 7.34 6.55 6.55 6.55 6.55 7.34 6.55 7.34 6.55 7.34 6.55 7.34 7.34 7.35 7.32	7.60 7.44 7.38 7.36		5,945 5,256 5,265 5,275 5,265 5,275	5.38 5.38	5.6.6.75 5.78 5.75 5.63	6.98 7.30 6.15 7.20 7.20 7.20 7.20 5.82	7.46 7.46 7.53 7.62 7.65 7.65 7.65 7.65 7.65 7.65	•	MgO
4,44 3,47 3,47 3,47 3,47 3,47 3,47 3,47	3.79 4.10 3.86 3.84 4.10		2,904 2,904	3.24 3.51	3.24 3.12 3.12 3.14 3.14 3.24 3.24 3.24 3.24	3.76 3.24 3.24 3.24 3.86 3.86 3.87 3.88 3.87 3.88 3.87 3.88 3.84 3.85	3.91 4.21 4.21 3.77 4.20 3.75 4.60 3.75 3.29 3.74		CaO
99.04 86.50 98.73 98.73 98.43 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.21 99.23 98.58 98.74 99.23 99.23 99.23	99.50 99.28 99.58 98.72 99.47		100.83 99.30 100.67 100.38 99.86 100.02 98.61 100.02 98.45 99.45 98.45 98.45 98.45 98.45 98.45 98.45 98.45 98.45 98.45	99.89 100.17 100.01	99.95 100.05 99.53 100.12 99.61 100.17 100.27 100.51	99.60 99.91 99.21 99.33 99.78 100.00 100.00 99.76 99.77 99.77 99.58 99.64	190.32 99.40 99.01 99.42 99.42 99.42 99.42 99.42 99.42 100.22 100.22 100.50 100.49 100.34 99.91 100.34 99.91	;	Total
2.94 2.94 2.94 2.94 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	2.92 2.95 2.96 2.96		2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96	2.96	2.95 2.96 2.98 2.98 2.97 2.97 2.97	2.98 2.96 2.96 2.96 2.95 2.96 2.95 2.96 2.98 2.98 2.99	2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96		si
1.95 1.96 1.97 1.97 1.97 1.97 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98	1.99 1.93 1.95 1.98 1.97			1.93 1.96	1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	AI VI
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00			0.00		0.000		1	=
0.15 0.16 0.18 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	0.18 0.16 0.19 0.10		0.115 0.115 0.115 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117	0.11	0.12 0.12 0.12 0.12 0.10 0.10	0.10 0.10 0.11 0.12 0.12 0.12 0.12 0.12	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12		Fe3+
$\begin{array}{c} 1.54\\ 1.54\\ 1.48\\ 1.58\\$	1.48 1.51 1.55 1.55			1.69 1.62	1.67 1.59 1.59 1.59	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	Fe 2+
	0.00 0.00 0.00 0.00			0.00		0.		2	ទ
0.27 0.22 0.24 0.25 0.25 0.25 0.23 0.23 0.24 0.23 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.24 0.23 0.22 0.22 0.22		0.228 0.228 0.237 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.237 0.238 0.237 0.238 0.237 0.237 0.238 0.237 0.238 0.2377 0.2377 0.2377 0.2377 0.2377 0.23777 0.237777 0.23777777777777777777777777777777777777	0.37	0.33 0.27 0.27 0.27 0.27 0.30 0.30	0.24 0.25 0.26 0.28 0.28 0.28 0.28 0.28 0.28 0.26 0.25 0.25 0.25	$\begin{array}{c} 0.22\\ 0.225\\ 0.226\\ 0.226\\ 0.24\\ 0.26\\ 0.$	•	Mn
0.76 0.87 0.88 0.82 0.84 0.84 0.84 0.84 0.87 0.87 0.86 0.86 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82	0.88 0.87 0.85 0.86		0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.66	0.69 0.74 0.79 0.79 0.79	0.81 0.85 0.72 0.72 0.85 0.85 0.85 0.85 0.85 0.82 0.82 0.82	0.87 0.88 0.88 0.83 0.86 0.87 0.87 0.87 0.87 0.87	1	Mg
0.38 0.37 0.32 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.32 0.32 0.32 0.32		0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.27	0.27 0.28 0.28 0.28 0.27 0.27 0.35 0.35	$\begin{array}{c} 0.3\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.33\\ 0.32\\ 0.33\\ $	$\begin{array}{c} 0.33\\ 0.33\\ 0.33\\ 0.34\\ 0.33\\$	2	Ca
$\begin{array}{c} 52223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 502223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50223\\ 50233\\$	50.82 51.01 52.02 52.28 52.08		57 59 50 50 50 50 50 50 50 50 50 50 50 50 50	57.22 56.97 54.86	56.23 56.71 53.17 53.31 53.31 53.31 53.30 53.50	54 26 52 06 53 53 53 54 26 51 28 51 28 51 58 51 58 5155 5155	51,32 51,32 51,41 51,41 51,41 51,41 51,41 51,41 51,41 51,41 51,12 52,20 52,20 52,20 52,20		% Alm
25.92 29.72 29.72 29.72 29.72 29.28 29.28 29.55	30.26 29.38 28.98 29.22 28.87		20.30 20.30 20.30 20.30 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.35 20.43	21.21 22.42 21.48	23.27 22.93 26.19 26.51 26.53 26.53 26.70 25.89	27.21 28.46 16.79 24.29 26.52 27.83 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 28.45 27.70	299.25 299.25 27.18 27.92 27.92 29.38 29.38 27.05 27.05 27.05 27.05 27.05 27.05 29.84	-	% Рур
9.06 7.70 8.75 8.75 8.75 8.75 8.75 8.77 8.77 8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04	8.07 7.99 7.58 7.50		13.61 12.62 12.65 12.65 12.65 12.65 12.65 12.65 12.88 12.88 12.57 12.88 12.31 12.88 12.31 12.88 12.31 12.88 12.31 12.88 12.31 12.88 12.31 12.35	12.44 13.58	11.28 11.48 9.16 9.59 9.59 10.16 10.00	8.01 8.24 18.84 11.230 11.25 9.73 9.73 9.73 9.73 9.77 8.69 7.87 7.11 17.11	8.221 9.239 8.164 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15	1 2	% Sps
11.86 10.26 10.26 10.26 10.26 10.26 10.92 10.92 10.92 10.13 10.13 10.13 10.13 10.13 10.13 10.13 11.85 11.85 11.85 11.85 11.64 11.64 11.64 11.64	9.95 10.72 10.04 10.38 10.99		8.00 9.05 9.05 9.05 9.15 9.31 9.31 9.31 9.31 9.31 8.69 8.69 8.69 8.71 8.69 8.71 10.75 8.71 10.25	8.79 9.39	8.69 9.01 11.02 10.46 8.48 8.48 8.48 9.53	10.30 10.70 9.97 9.17 8.66 10.89 10.51 10.51 10.55 10.47 10.56 9.49	10.37 10.37 11.86 11.55 11.65 11.65 11.65 11.65 12.36 12.36 12.36 12.38 12.38		% Grs
0.90 1.03 0.82 1.14 1.13 1.14 1.13 0.94 0.94 0.94 0.94 0.94 0.95 0.85 0.95 0.87 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	0.89 0.99 0.53		0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	0.43	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.52 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55	0.74 0.76 0.76 0.76 0.57 0.57 0.55 0.55 0.55 0.55 0.55 0.55		% And
	0.00 0.00 0.00			0.00					% Uvar
	0.01 0.04 0.02 0.02		0.0.0 0.0.00 0.0.000000	0.02	0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.02 0.02 0.02 0.02 0.03 0.04 0.02 0.04 0.02 0.02	0.01 0.02 0.02 0.04 0.01 0.02 0.02	:	% CaTi grt

		92	TABL traver
		672	E DR-3 (CONTINUED). E se distance (microns)
155 155 155 155 155	144 145 148 148	135 137 138	SIMS spot
98 100 102 103 104	92 95 97 95	91 91 91	eProbe #
37,49 37,92 37,95 37,76 37,57 37,60 37,99	37.36 38.00 37.89 37.65 37.41	37.77 37.77 37.41 37.41	SiO2
0.14 0.07 0.08 0.08 0.06	0.07 0.06 0.03 0.05 0.15	0.02 0.01 0.12 0.09	TIO2
20,77 21,31 21,50 21,10 21,14	21.10 21.24 21.37 21.60 21.46 21.00	21.05 21.33 20.98 20.87 21.21	AI2O3
0.0000000000000000000000000000000000000	0.00	0.0000000	Cr2O3
25.98 25.89 25.30 25.36 25.36 25.85	26.01 26.18 25.04 25.91 25.91	25.00 25.00 25.83 25.83 25.83	FeO
3.65 3.61 3.60 3.92 3.82	4.18 3.39 3.75 3.70	3.93 4.15 3.93	MnO
6.82 6.77 6.82 7.06 6.84	6.58 7.45 7.64 7.01	7.48 6.62 7.45	MgO
4.44 4.48 4.37 4.31 4.41	4.33 3.81 4.29 4.42 4.42	4.36 4.38 3.73	CaO
99.30 100.29 99.50 99.64 98.86 100.46	99.65 100.43 98.94 99.69 99.89 99.89 98.87	98.43 99.28 99.35 99.35	Total
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.93 2.95 2.95 2.95	2.98 2.95 2.95 2.95	s.
1.92 1.96 1.96 1.96 1.97	1.95 1.97 1.97 1.97	1.96 1.94 1.94	
0.0000000000000000000000000000000000000	0.00	0.01	2 I
0.77 0.76 0.73 0.73	0.18 0.13 0.12 0.14	0.19 0.14 0.20 0.22 0.22	Fe3+
1.52 1.52 1.52 1.54	1.52 1.57 1.55 1.55	1.50 1.51 1.47	Fe 2+
0.000 0.000 0.000 0.000 0.000	0.00	0.00	ନ ଜ
0.24 0.27 0.27 0.26 0.25	0.28 0.27 0.23 0.25 0.25	0.23 0.28 0.27 0.26	Mn
0.80 0.87 0.85 0.80 0.83 0.79	0.77 0.76 0.87 0.88 0.77 0.77	0.88 0.88 0.78 0.81 0.81	Mg
0.37 0.37 0.36 0.37 0.37	0.36 0.36 0.32 0.37 0.37 0.37	0.37	Ca
52.69 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	51.05 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.71 52.72 52.71 52.72	50.94 51.27 22 22 22 22 22 22 22 22 22 22 22 22 2	Alm %
5.80 6.80 7.96 8.84 7.96 80 80 80 80 80 80 80 80 80 80 80 80 80	5.56 9.24 9.84 6.28 8 9.84 7 8 5.85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.52 9.57 9.88 9.88 9.88 8 9.88 8	Pyp %
.223 .006 .24 .13 .107 .107 .107 .10 .07	.47 .21 .56 10 .56 10 .05	.02 10 .04 11 .96 9	Sps %
		.88 .88 .59 .59 .62	Grs %
.79 95 10 10 10 10 10 10 10 10 10 10 10 10 10	.06 .06 .06 .06 .06 .06	.15 .15	And %
	0.00	0.000	Uvar %
0.05 0.02 0.01 0.02 0.02 0.02	0.02 0.01 0.02 0.02	0.03 0.03	CaTi grt

TABLE DR-4. $\delta^{18}\text{O}$ ANALYSES OF ZIRCON IN CATALINA QUARTZITE BY ION MICROPROBE

			2 S.D.					Prim.	
		δ ¹⁸ Ο	KIM-5		δ ¹⁸ Ο	2 S.E.	¹⁶ O	Intensity	Yield
							cps x10-9	nA	GHz/nA
Analysis #	Comment	VSMOW	bracket	_α ¹⁸ Ο	Raw	measuremen	t		
Session #1 Date: 4/24-4/2 Sample: 05C-09	372007			_	_				
Analysis numbers not rep	ported are from other samples								
99	ZP-12_KIM5				6.18	0.35	2.91	2.91	1.000
100	ZP-12_KIM5				6.54	0.53	2.90	2.93	0.990
101	ZP-12_KIM5 ZP-12_KIM5				6.24	0.35	2.89	2.92	0.989
102			0.45		6.00	0.46	2.09	2.91	0.994
	bracket (60-62 64 78-81)		0.43	1 001037	6 13				
103	ZP-12 C-9-40r	17.82	0.31		19.02	0.50	2.78	2.85	0.976
104	ZP-12 C-9-39r?	23.54	0.31		24.74	0.40	2.75	2.86	0.962
105		8.00	0.31		9.19	0.49	2.75	2.86	0.964
106	ZP-12_C-9-38r	15.45	0.31		16.65	0.48	2.63	2.83	0.931
107	ZP-12_C-9-38c inclusion	14.43	0.31		15.63	0.47	2.78	2.84	0.977
108	ZP-12_C-9-37r	18.42	0.31		19.62	0.37	2.64	2.83	0.934
109	ZP-12_C-9-36?r	12.63	0.31		13.83	0.52	2.73	2.82	0.967
110	ZP-12_C-9-33c inclusion	12.08	0.31		13.27	0.41	2.70	2.82	0.956
111	ZP-12_C-9-33r	15.41	0.31		16.61	0.44	2.75	2.83	0.970
112	ZP-12_C-9-34r	24.00	0.31		25.20	0.43	2.73	2.82	0.970
113	ZP-12_C-9-34r	24.57	0.31		25.78	0.41	2.72	2.82	0.964
114		11.33	0.31		12.00	0.10	2.88 2.70	2.81	1.020
115	ZP-12_C-9-271 ZP-12_C-9-27c	11.40	0.31		12.07	0.47	2.79	2.00	0.997
117	ZP-12_C-9-28c	22.28	0.31		23.49	0.35	2.77	2.01	0.900
117 118	7P-12_C-9-25c inclusion	<u>9 17</u>	0.31		10.36	0.35	2.75	2.01	0.002
119	ZP-12 C-9-25r	15.23	0.31		16.43	0.45	2.65	2.84	0.931
	_								
120	ZP-12_KIM5				6.38	0.32	2.79	2.81	0.991
121	ZP-12_KIM5				6.33	0.48	2.75	2.82	0.974
122	ZP-12_KIM5				6.32	0.42	2.76	2.81	0.984
123	ZP-12_KIM5				6.22	0.39	2.72	2.77	0.982
	average		0.13	1 001100	6.31				
	bracket (78-81,120-123)		0.31	1.001180	6.28				
128	7P-12 C-9-23r	19.06	0 17		20.32	0.38	2.66	2.68	0 992
120	ZP-12 C-9-22r	17 74	0.17		19.00	0.44	2.68	2.69	0.997
130	ZP-12 C-9-26r	19.22	0.17		20.48	0.42	2.56	2.70	0.948
131	ZP-12 C-9-26c	11.27	0.17		12.52	0.44	2.62	2.68	0.976
132	ZP-12_C-9-21c	4.74	0.17		5.98	0.49	2.64	2.68	0.985
133	ZP-12_C-9-21m inclusion	18.56	0.17		19.82	0.60	2.54	2.69	0.941
134	ZP-12_C-9-17r	18.26	0.17		19.52	0.37	2.70	2.69	1.002
135	ZP-12_C-9-16r	19.80	0.17		21.06	0.36	2.66	2.70	0.986
136	ZP-12_C-9-16ccrack	14.24	0.17		15.49	0.53	2.71	2.67	1.017
137	ZP-12_C-9-18r	13.59	0.17		14.85	0.42	2.59	2.69	0.963
138	ZP-12_C-9-15r	17.56	0.17		18.82	0.32	2.67	2.68	0.997
138	2P-12_C-9-15c inclusion	15.50	0.17		16.76	0.57	2.68	2.69	0.997
140	7P-12 KIM-5				6 35	0.46	2 60	2 69	0.967
141	ZP-12_KIM-5				6.22	0.51	2.63	2.71	0.969
142	ZP-12 KIM-5				6.47	0.48	2.65	2.70	0.981
143	ZP-12 KIM-5				6.38	0.45	2.63	2.69	0.977
	average		0.21		6.35				
	bracket (120-123,140-143)		0.17	1.001237	6.33				
221	ZP-12-KIM5				6.93	0.42	2.52	2.62	0.962
222	ZP-12-KIM5				6.45	0.42	2.55	2.62	0.974
223	ZP-12-KIM5				6.38	0.48	2.54	2.61	0.973
224	ZP-12-KIM5				6.64	0.32	2.51	2.62	0.960
	average		0.49		6.60				
	bracket (195-198,221-224)		0.39	1.001599	6.70				
231	ZP-12C-9-1c	16.62	0.45		18.17	0.43	2.57	2.56	1.006
232	ZP-12C-9-1r	11.49	0.45		13.03	0.57	2.52	2.58	0.977
223	7P-12KIM5				6 66	0.44	2 56	2 58	U aau
233	7P-12KIM5				6 60	0.51	2.50	2.50	0.990
235	ZP-12KIM5				6.37	0.35	2.51	2.59	0.969
236	ZP-12KIM5				6,94	0.46	2.42	2.59	0.934
200	average		0.47		6.64			2.00	
	bracket (221-224,233-236)		0.45	1.001524	6.62				

			2 S.D.					Prim.	
		δ ¹⁸ Ο	KIM-5		δ ¹⁸ Ο	2 S.E.	¹⁶ O	Intensity	Yield
							cps x10-9	nA	GHz/nA
Analysis #	Comment	VSMOW	bracket	α ¹⁸ Ο	Raw	measurement			
237	ZP-12-C-9-2r	12.43	0.37		14.05	0.61	2.50	2.56	0.974
238	ZP-12-C-9-2c inclusion	6.92	0.37		8.53	0.56	2.46	2.58	0.952
239	ZP-12-C-9-3c	8.40	0.37		10.01	0.52	2.41	2.55	0.941
240	ZP-12-C-9-3r	19.60	0.37		21.23	0.41	2.39	2.57	0.931
241	ZP-12-C-9-5c	6.14	0.37		7.75	0.52	2.46	2.58	0.953
242	ZP-12-C-9-5m	21.74	0.37		23.38	0.58	2.48	2.58	0.962
243	ZP-12-C-9-5r	17.49	0.37		19.12	0.55	2.52	2.57	0.979
244	ZP-12-C-9-6c	5.52	0.37		7.13	0.55	2.29	2.56	0.896
245	ZP-12-C-9-6m inclusion	20.90	0.37		22.53	0.49	2.36	2.57	0.919
246	ZP-12-C-9-4c	6.40	0.37		8.01	0.44	2.35	2.53	0.931
247	ZP-12-C-9-4r	23.50	0.37		25.13	0.45	2.41	2.55	0.944
248	ZP-12-C-9-9m	23.89	0.37		25.52	0.47	2.49	2.52	0.987
249	ZP-12-C-9-9r	20.14	0.37		21.77	0.36	2.45	2.53	0.968
250	ZP-12-C-9-9c?	20.94	0.37		22.58	0.43	2.48	2.54	0.978
251	ZP-12-C-9-11r	20.16	0.37		21.79	0.64	2.49	2.50	0.994
252	ZP-12-C-9-12c	16.64	0.37		18.27	0.41	2.44	2.51	0.974
253	ZP-12-C-9-12m	22.84	0.37		24.48	0.41	2.42	2.50	0.964
254	ZP-12-C-9-12r	13.73	0.37		15.35	0.58	2.26	2.53	0.896
255	ZP-12-C-9-14r	16.10	0.37		17.72	0.38	2.34	2.51	0.931
256	ZP-12-C-9-14c?	5.81	0.37		7.42	0.41	2.42	2.48	0.976
257	ZP-12-C-9-13c/m?	19.68	0.37		21.32	0.58	2.28	2.49	0.915
258	ZP-12-C-9-19c/m?	4.78	0.37		6.39	0.56	2.28	2.48	0.920
259	ZP-12-C-9-19r	23.25	0.37		24.89	0.37	2.40	2.48	0.967
260	ZP-12-C-9-20r	18.31	0.37		19.94	0.50	2.37	2.47	0.957
261	ZP-12-C-9-20c/m	24.11	0.37		25.74	0.44	2.39	2.48	0.962
262	ZP-12-C-9-24c	19.60	0.37		21.23	0.69	2.25	2.47	0.913
263	ZP-12-C-9-24r	18.72	0.37		20.35	0.44	2.45	2.48	0.988
264	ZP-12-C-9-29c	10.47	0.37		12.09	0.48	2.37	2.46	0.961
265	ZP-12-C-9-ac? Inclusion	9.06	0.37		10.67	0.73	2.42	2.46	0.983
266	ZP-12-C-9-31c inclusion	7.35	0.37		8.96	0.51	2.39	2.44	0.976
267	ZP-12-C-9-31m	23.46	0.37		25.10	0.42	2.32	2.45	0.945
268	ZP-12-C-9-31r	18.09	0.37		19.72	0.39	2.29	2.46	0.934
269	ZP-12-C-9-35m	23.94	0.37		25.57	0.47	2.25	2.48	0.905
270	ZP-12-KIM5				6.78	0.47	2.33	2.48	0.943
271	ZP-12-KIM5				6.65	0.24	2.34	2.46	0.950
272	ZP-12-KIM5				6.65	0.42	2.33	2.46	0.946
273	ZP-12-KIM5				6.94	0.22	2.35	2.45	0.957
	average		0.28		6.75				
	bracket (221-224,233-236)		0.37 2 S.D.	1.001599	6.70				

analysis zircon

TABLE DR-5. SUB-MICRON PIT δ^{18} O ANALYSES OF ZIRCON FROM CATALINA QUARTZITE BY ION MICROPROBE

Analysis #	Comment	δ ¹⁸ Ο VSMOW	2 S.D. KIM-5 bracket	α ¹⁸ Ο	δ ¹⁸ Ο Raw	2 S.E. measurement	¹⁶ O cps x10-9
Session #1 Date: 5/9/	2007						
zircon 34							
20070509@1.asc	ZP-12_KIM5				-2.6	0.982	0.00219
20070509@2.asc	ZP-12_KIM5				-2.8	1.048	0.00215
20070509@3.asc 20070509@4.asc	ZP-12_KIM5 ZP-12_KIM5				-2.1	0.941	0.00208
20070303@ 11000	average KIM 5		0.6		-2.6	01011	0100200
20070509@5.asc	ZP-12 KIM-5 1 um step pits overlap	5.0	1.7		-2.0	1.077	0.00200
20070509@6.asc	ZP-12 KIM-5 1 um step pits overlap	5.0	1.7		-2.0	0.945	0.00204
20070509@7.asc	ZP-12 KIM-5 1 um step pits overlap	2.0	1.7		-5.0	1.125	0.00237
20070309@8.830	21-12 Kim-5 1 um step pits overlap	0.1	1.7		-1.0	0.037	0.00199
20070509@9.asc	ZP-12_C-9_34 core	6.5	1.7		-0.5	1.079	0.00199
20070509@10.asc	ZP-12 C-9 Z34 Trav1 rim-core 2 um step 10 analyses ZP-12 C-9 Z34 Trav1 rim-core 2 um step 10 analyses	17.9	1.7		10.8	1.046	0.00196
20070509@12.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	18.6	1.7		11.5	0.956	0.00190
20070509@13.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	23.4	1.7		16.3	1.090	0.00189
20070509@14.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	23.1	1.7		16.0	0.995	0.00189
20070509@15.asc	ZP-12 C-9 234 Trav1 rim-core 2 um step 10 analyses	22.7	1.7		15.5	1.055	0.00190
20070509@17.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	23.5	1.7		16.3	1.027	0.00184
20070509@18.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	19.9	1.7		12.8	1.079	0.00181
20070509@19.asc	ZP-12 C-9 z34 Trav1 rim-core 2 um step 10 analyses	5.4	1.7		-1.6	0.947	0.00181
20070509@20.asc	ZP-12_KIM5				-1.8	1.000	0.00174
20070509@21.asc	ZP-12_KIM5 ZP-12_KIM5				-0.7	1.008	0.00173
20070509@22.asc	ZP-12_KIM5				-2.0	1.102	0.00170
-	average KIM 5		1.4		-1.3	1.040	
	bracket KIM 5		1.7	0.9930251	-1.9		
20070509@24.asc	ZP-12 KIM-5 after Reservoir increase				-1.9	0.945	0.00181
20070509@25.asc	ZP-12 KIM-5 after Reservoir increase				-1.6	1.020	0.00179
20070509@20.asc	ZP-12 KIM-5 after Reservoir increase				-2.3	1.002	0.00177
	average KIM 5		0.7		-2.0		
20070509@28.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	16.1	0.9		9.3	1.158	0.00177
20070509@29.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	16.0	0.9		9.1	1.166	0.00178
20070509@30.asc	ZP-12 C-9 Z34 Trav2 rim-core 2 um step 13 analyses	15./	0.9		8.8	1.074	0.00173
20070509@32.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	18.4	0.9		11.5	1.083	0.00177
20070509@33.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	22.3	0.9		15.4	1.038	0.00172
20070509@34.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	22.9	0.9		16.0	1.013	0.00173
20070509@35.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	22.5	0.9		16.6	1.005	0.00171
20070509@37.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	21.8	0.9		14.9	1.125	0.00172
20070509@38.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	24.1	0.9		17.2	1.027	0.00169
20070509@39.asc 20070509@40.asc	ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses ZP-12 C-9 z34 Trav2 rim-core 2 um step 13 analyses	24.2	0.9		17.4	1.126	0.00173
		/10	015				
20070509@41.asc 20070509@42.asc	ZP-12 KIM-5 ZP-12 KIM-5				-1.2	1.024	0.00165
20070509@43.asc	ZP-12 KIM-5				-1.6	1.176	0.00164
20070509@44.asc	ZP-12 KIM-5		0.5		-1.1	1.308	0.00149
	bracket KIM 5		0.5	0.9932706	-1.4 -1.7		
20070509@45.asc	ZP-12 KIM-5 after Reservoir increase				-2.5	0.990	0.00164
20070509@46.asc	ZP-12 KIM-5 after Reservoir increase				-2.2	1.163	0.00164
20070509@47.asc	ZP-12 KIM-5 after Reservoir increase				-1.3	1.011	0.00160
20070509@48.asc	2P-12 KIM-5 after Reservoir increase average KIM 5		1.4		-1.2	1.306	0.00163
20070509@49.asc	ZP-12 C-9 z34 Trav3 rcore-rim 2 um step 1 analysis	22.1	1.3		15.7	1.100	0.00169
20070509@50.asc	ZP-12 C-9 z34 Trav4 core-rim 2 um step o analyses,	6.0	1.3		-0.3	1.185	0.00158
20070509@52.asc	ZP-12 C-9 z34 Trav4 core-rim 2 um step	6.2	1.3		0.0	1.286	0.00156
20070509@53.asc	ZP-12 C-9 z34 Trav4 core-rim 2 um step; overlaps @49	10.0	1.3		3.7	1.171	0.00154
20070509@55.asc	ZP-12 C-9 z34 Trav4 core-rim 2 um step; overlaps @49 ZP-12 C-9 z34 Trav4 core-rim 2 um step	17.8 20.8	1.3 1.3		11.5 14.4	1.223 1.022	0.00158
	7D 12 //IM F	20.0	1.0				0.0015
20070509@57.asc	ZP-12 KIM-5				-0.3	1.151	0.00154
20070509@58.asc	ZP-12 KIM-5				-0.1	1.233	0.00154
20070509@59.asc	2P-12 KIM-5		1.0		-2.0	1.147	0.00151
	bracket KIM 5		1.3	0.9937728	-1.2		

Analysis Number

TABLE DR-6.SHRIMP U-Pb ISOTOPE DATA FROM CATALINA QUARTZITE ZIRCON

	Common				²⁰⁷ Pb*/		²⁰⁶ Pb*/			²⁰⁶ Pb/			
	²⁰⁶ Pb	U	Th	U/Th	²³⁵ U	±1s	²³⁸ U	± 1s	error	²⁰⁷ Pb	±1s	²⁰⁶ Pb*/ ²³⁸ U	±1s
Analysis	(%)	(ppm)	(ppm)			(%)		(%)	corr.		(%)	(Ma)	(Ma)
C9-11.1C	0.02	1686	1486	0.88	0.13	2.2	0.02	1	0.45	0.0475	2	125.1	1.2
C9-14.1C	1.03	148	121	0.82	0.15	5.2	0.02	1.6	0.31	0.0567	4.9	124.9	2
C9-15.1R	0.29	208	9	0.04	0.12	4.9	0.017	1.5	0.31	0.0505	4.7	111.4	1.7
C9-16.1R	-0.37	394	15	0.04	0.11	6.9	0.018	1.3	0.19	0.0423	6.7	116	1.5
C9-17.1C	0.45	186	67	0.36	0.13	7	0.02	1.5	0.22	0.0486	6.9	126.5	1.9
C9-18.1R	2.09	184	12	0.07	0.11	21	0.018	1.9	0.09	0.0431	20.8	113.2	2.1
C9-21.1M	1.14	592	78	0.13	0.13	5.3	0.018	1.2	0.22	0.0533	5.2	112.6	1.3
C9-22.1C	1.77	1950	80	0.04	0.20	1.6	0.023	4	0.6	0.0626	1.3	146.4	1.4
C9-23.1C	0.39	1224	466	0.38	0.13	2.6	0.019	1	0.4	0.0504	2.4	121.7	1.2
C9-25.1R	2.49	156	10	0.06	0.14	15	0.019	1.9	0.13	0.0542	14.4	118.2	2.2
C9-27	0.06	540	9	0.02	0.11	6.1	0.018	1.2	0.2	0.0446	6	117.4	1.4
C9-28.1C	0.19	1445	21	0.01	0.13	1.9	0.019	1	0.52	0.0499	1.7	120.1	1.2
C9-30.1	1.9	300	253	0.84	0.15	4.7	0.018	1.4	0.29	0.0609	4.5	117.6	1.6
C9-32.1C	0.27	425	160	0.38	0.13	3.4	0.019	1.2	0.36	0.0506	3.2	121.4	1.5
C9-33.1R	4.35	182	9	0.05	0.08	58	0.018	2.5	0.04	0.0299	57.4	117.1	2.9
C9-34.1C	0.88	442	224	0.51	0.13	8.5	0.02	1.3	0.15	0.0476	8.4	124.3	1.6
C9-35.1C	-0.16	1331	1189	0.89	0.13	2.4	0.02	1	0.43	0.0463	2.2	126	1.3
C9-36.1R	1.44	149	9	0.06	0.10	24	0.018	2	0.08	0.0402	23.6	112.4	2.2
C9-37.1C	0.44	327	224	0.69	0.13	6.4	0.019	1.3	0.21	0.0486	6.3	123.6	1.6
C9-38.1R	4.04	182	8	0.04	0.12	25	0.018	2.1	0.09	0.048	24.6	113.4	2.4
C9-39.1R	0.25	353	10	0.03	0.12	3.9	0.018	1.3	0.34	0.0503	3.7	115.1	1.5
C9-40.1	0.88	1653	4 2	0.03	0.13	4.1	0.019	4	0.25	0.0498	4	123.3	1.3

Analyses 22 and 40 were found to contain inclusions and were discarded

TABLE DR-7.SHRIMP REE DATA FROM CATALINA QUARTZITE ZIRCON

Analysis La Ce Nd Sm Eu Gd Dy Er Yb Hf Yb/Gd U/Yb Th/Yb Ce/Sm Yb/Dy Gd/Nd Gd/Sm Sm/Nd Ce/Ce* Eu/Eu* (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

C9-11.1C	0.198	119.3	5.1	12.8	2.6	121.4	532	824	1214	10457	10.0	1.5	1.30	9.3	2.3	23.6	9.5	2.5	99	0.20
C9-14.1C	0.114	252.5	0.9	1.6	0.6	11.1	61	134	325	12043	29.2	0.5	0.40	155.8	5.3	11.8	6.9	1.7	530	0.44
C9-15.1R	0.040	2.2	0.0	0.2	0.2	2.7	12	14	22	12202	8.3	9.6	0.43	12.5	1.9	54.9	15.2	3.6	25	0.86
C9-16.1R	0.031	3.4	0.1	0.3	0.3	6.1	32	34	44	11663	7.2	9.0	0.36	10.8	1.4	111.0	19.6	5.7	43	0.71
C9-17.1C	0.035	54.6	0.7	2.0	0.4	21.7	115	217	368	11010	17.0	0.5	0.19	27.1	3.2	29.5	10.8	2.7	273	0.20
C9-18.1R	2.211	3.4	0.5	0.5	0.3	3.4	12	19	35	11063	10.4	5.4	0.37	7.2	3.0	6.5	7.1	0.9	1	0.73
C9-21.1M	0.225	85.1	0.0	0.3	0.3	8.7	80	101	142	17218	16.4	4.3	0.58	321.3	1.8	199.1	32.8	6.1	316	0.69
C9-22.1C	0.680	7.4	0.4	1.2	0.7	12.6	34	50	118	12703	9.4	17.1	0.72	6.0	3.5	28.3	10.2	2.8	6	0.50
C9-23.1C	4.270	72.7	1.6	2.7	0.6	26.2	168	340	703	13093	26.8	1.8	0.70	27.1	4.2	16.0	9.8	1.6	11	0.23
C9-25.1R	2.335	3.3	0.1	0.2	0.2	1.8	8	11	21	10118	11.7	7.7	0.50	19.3	2.8	18.6	10.6	1.8	2	0.86
C9-27.1C	1.278	2.8	0.5	0.7	0.4	7.5	31	42	59	12057	7.8	9.8	0.17	4.1	1.9	14.9	11.1	1.3	1	0.56
C9-28.1C	0.128	3.9	0.2	0.8	0.6	6.8	10	10	21	12655	3.1	71.8	1.05	5.0	2.2	41.8	8.7	4.8	14	0.75
C9-30.1C	0.631	14.4	0.2	0.4	0.3	6.8	53	117	310	15720	45.8	1.0	0.85	36.3	5.8	31.8	17.1	1.9	16	0.54
C9-32.1C	0.141	60.6	0.5	1.7	0.2	19.6	125	241	407	12985	20.7	1.1	0.42	36.2	3.3	38.6	11.7	3.3	136	0.12
C9-33.1R	3.841	2.6	0.1	0.2	0.2	1.8	9	14	26	9922	14.2	7.0	0.36	14.2	2.9	21.0	10.2	2.1	1	0.84
C9-34.1C	3.126	32.4	2.8	5.8	0.7	61.1	332	584	903	11228	14.8	0.5	0.27	5.6	2.7	21.7	10.6	2.0	5	0.12
C9-35.1C	9.396	99.8	4.3	7.8	1.7	71.0	324	508	773	10909	10.9	1.8	1.63	12.8	2.4	16.6	9.1	1.8	7	0.23
C9-36.1R	1.521	6.2	0.3	0.3	0.3	3.1	13	17	27	10357	8.8	5.6	0.36	17.7	2.1	9.5	8.8	1.1	3	0.74
C9-37.1C	0.044	536.8	0.4	1.3	0.3	12.4	74	151	301	13790	24.2	1.1	0.78	422.3	4.1	27.7	9.8	2.8	2707	0.21
C9-38.1R	3.978	9.6	0.6	0.6	0.3	4.2	15	19	29	12270	7.0	6.4	0.31	16.9	1.9	7.4	7.3	1.0	2	0.59
C9-39.1R	0.046	3.2	0.1	0.9	0.8	8.2	11	5	5	13310	0.6	72.2	2.08	3.5	0.4	72.7	8.9	8.1	25	0.84
C9-40.1	1.645	15.9	0.9	1.1	0.5	6.9	47	151	525	10524	76.1	3.3	0.09	14.9	11.1	7.4	6.5	1.1	6	0.54

Appendix DR-8 Catalina Metachert zircon CL, pit locations and $\delta^{18}O$

CL zones: detrital core mottled/bright inner rim oscillatory intermediate rim rare bright outer rim

ZP-12 05C-9z1

ZP-12 05C-9z2,3,4

ZP-12 05C-9z11&14

ZP-12 05C-9z12-13

ZP-12 05C-9z16-17

ZP-12 05C-9z15&18

ZP-12 05C-9z19&22

ZP-12 05C-9z20-21

ZP-12 05C-9z23-24

ZP-12 05C-9z25

ZP-12 05C-9z26

ZP-12 05C-9z27-28

ZP-12 05C-9z29-30-a

ZP-12 05C-9z31-33

ZP-12 05C-9z32

ZP-12 05C-9z34,37

				@ 9
	@50			
	@5I			
	@52		-	FIB pit
	<u> </u>		@19	
	@ <u>53</u>	@40	@18	
	@49 @54	@39	@17	
		@38		
	W 33	@37		
			WIS	
		@36	@14	
		@35		
			@13	
		@34	@12	
		@33	@11	
		@32	@10	
		@31		Catalina metachert
		@30		
		താം		zircon pit locations
		@28	1_1_1	<u> </u>
ZP-12C9z34 O	THER2 40Pa	a 5/29/20)07	20.0um

ZP-12 05C-9z35-36

ZP-12 05C-9z38

ZP-12 05C-9z39-40

Figure DR-6 Trace element and U-Pb isotope analyses of Catalina quartzite zircons, colors indicate CL texture as in Fig. 3 A) 204Pb corrected concordia diagram of SHRIMP analyses. B) Chondrite-normalized REE diagram of combined isotope and Trace Element analyses. C) Th/U vs. ²³⁸U-²⁰⁶Pb age. High Th/U cores are older and likely detrital igneous zircon. All rim CL textures are indistinguishable in age and Th/U, both of which suggest metamorphic origin. D) Yb/Gd vs. Eu/Eu*. Detrital cores have steeper HREE patterns (greater Yb/Gd) and more prominent Eu anomalies (smaller Eu/Eu*) consistent with coexisting plagioclase (but not garnet) during formation. Rims have flatter HREE and smaller Eu anomalies, indicating growth in a plagioclase-absent, garnet-present environment.

Appendix DR-9 Back-scattered electron images of garnets analyzed for δ^{18} Oby ion microprobe. Pit diameter is ~10 μ m. The lower Z matrix mineral is quartz. Extremely bright BSE material in cracks and along grain boundaries is remnant gold coating . Numbers in yellow below pits are δ^{18} O values in ‰ relative to VSMOW.

White numbers above pits are ion microprobe analysis number as recorded in Table DR-3. Strikethrough represents discarded analysis.

g1 baby

05C-09aOB g1 SE pits

05C-09aOB g2

05C-09aUW g1 Center pits

05C-09aUW g1 SW pits

05C-09aUW g2