25 research outputs found

    Preparation, imaging, and quantification of bacterial surface motility assays.

    Get PDF
    Publication fees for this article were partially sponsored by Bruker Corporation.International audienceBacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more "temperate swarmers" that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. "Wettability", or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment

    Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study

    Get PDF
    Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI) = 0.27-0.81, P = 0.02) and a decrease in Breslow thickness (P = 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (P = 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CI = 1.11-1.94, P = 0.03; rs510432 CC, OR 1.84; 95% CI = 1.12-3.02, P = 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, P = 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CI = 0.21-0.88, P = 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CI = 0.34-0.87, P = 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression

    Sensitization of Gram-Negative Bacteria to Aminoglycosides with 2-Aminoimidazole Adjuvants

    No full text
    In 2019, five million deaths associated with antimicrobial resistance were reported by The Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii, a Gram-negative bacterial pathogen, is among the list of urgent threats. Previously, we reported 2-aminoimidazole (2-AI) adjuvants that potentiate macrolide activity against A. baumannii. In this study, we identify several of these adjuvants that sensitize A. baumannii to aminoglycoside antibiotics. Lead compounds 1 and 7 lower the tobramycin (TOB) minimum inhibitory concentration (MIC) against the TOB-resistant strain AB5075 from 128 Ī¼g/mL to 2 Ī¼g/mL at 30 Ī¼M. In addition, the lead compounds lower the TOB MIC against the TOB-susceptible strain AB19606 from 4 Ī¼g/mL to 1 Ī¼g/mL and 0.5 Ī¼g/mL, respectively, at 30 Ī¼M and 15 Ī¼M. The evolution of resistance to TOB and 1 in AB5075 revealed mutations in genes related to protein synthesis, the survival of bacteria under environmental stressors, bacteriophages, and proteins containing Ig-like domains

    Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study.

    Get PDF
    Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI)Ā =Ā 0.27-0.81, PĀ =Ā 0.02) and a decrease in Breslow thickness (PĀ =Ā 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (PĀ =Ā 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CIĀ =Ā 1.11-1.94, PĀ =Ā 0.03; rs510432 CC, OR 1.84; 95% CIĀ =Ā 1.12-3.02, PĀ =Ā 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, PĀ =Ā 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CIĀ =Ā 0.21-0.88, PĀ =Ā 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CIĀ =Ā 0.34-0.87, PĀ =Ā 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression
    corecore