2,569 research outputs found

    Geometric erogdicity of a bead-spring pair with stochastic Stokes forcing

    Get PDF
    We consider a simple model for the uctuating hydrodynamics of a exible polymer in dilute solution, demonstrating geometric ergodicity for a pair of particles that interact with each other through a nonlinear spring potential while being advected by a stochastic Stokes uid velocity field. This is a generalization of previous models which have used linear spring forces as well as white-in-time uid velocity fields. We follow previous work combining control theoretic arguments, Lyapunov functions, and hypo-elliptic diffusion theory to prove exponential convergence via a Harris chain argument. To this, we add the possibility of excluding certain "bad" sets in phase space in which the assumptions are violated but from which the systems leaves with a controllable probability. This allows for the treatment of singular drifts, such as those derived from the Lennard-Jones potential, which is an novel feature of this work

    Seemingly stable chemical kinetics can be stable, marginally stable or unstable

    Get PDF
    We present three examples of chemical reaction networks whose ordinary differential equation scaling limits are almost identical and in all cases stable. Nevertheless, the Markov jump processes associated to these reaction networks display the full range of behaviors: one is stable (positive recurrent), one is unstable (transient) and one is marginally stable (null recurrent). We study these differences and characterize the invariant measures by Lyapunov function techniques. In particular, we design a natural set of such functions which scale homogeneously to infinity, taking advantage of the same scaling behavior of the reaction rates

    Two-dimensional gravity with a dynamical aether

    Get PDF
    We investigate the two-dimensional behavior of gravity coupled to a dynamical unit timelike vector field, i.e. "Einstein-aether theory". The classical solutions of this theory in two dimensions depend on one coupling constant. When this coupling is positive the only solutions are (i) flat spacetime with constant aether, (ii) de Sitter or anti-de Sitter spacetimes with a uniformly accelerated unit vector invariant under a two-dimensional subgroup of SO(2,1) generated by a boost and a null rotation, and (iii) a non-constant curvature spacetime that has no Killing symmetries and contains singularities. In this case the sign of the curvature is determined by whether the coupling is less or greater than one. When instead the coupling is negative only solutions (i) and (iii) are present. This classical study of the behavior of Einstein-aether theory in 1+1 dimensions may provide a starting point for further investigations into semiclassical and fully quantum toy models of quantum gravity with a dynamical preferred frame.Comment: 11 pages, 4 figure

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure

    Numerical simulations of gravitational collapse in Einstein-aether theory

    Get PDF
    We study gravitational collapse of a spherically symmetric scalar field in Einstein-aether theory (general relativity coupled to a dynamical unit timelike vector field). The initial value formulation is developed, and numerical simulations are performed. The collapse produces regular, stationary black holes, as long as the aether coupling constants are not too large. For larger couplings a finite area singularity occurs. These results are shown to be consistent with the stationary solutions found previously.Comment: 9 pages, 7 figures; v2: corrected typos, added minor clarifying remarks, improved discussion of results in conclusio

    Limits to differences in active and passive charges

    Get PDF
    We explore consequences of a hypothetical difference between active charges, which generate electric fields, and passive charges, which respond to them. A confrontation to experiments using atoms, molecules, or macroscopic matter yields limits on their fractional difference at levels down to 10^-21, which at the same time corresponds to an experimental confirmation of Newtons third law.Comment: 6 pages Revtex. To appear in Phys. Rev.

    Deformed Special Relativity as an effective theory of measurements on quantum gravitational backgrounds

    Full text link
    In this article we elaborate on a recently proposed interpretation of DSR as an effective measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations. We provide several heuristic arguments to explain how such a new theory can emerge and discuss the possible observational consequences of this framework.Comment: 11 pages, no figure
    • …
    corecore