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Abstract
We present three examples of chemical reaction networks whose ordinary differential equation scaling limit are

almost identical and in all cases stable. Nevertheless, the Markov jump processes associated to these reaction networks
display the full range of behaviors: one is stable (positive recurrent), one is unstable (transient) and one is marginally
stable (null recurrent). We study these differences and characterize the invariant measures by Lyapunov function
techniques. In particular, we design a natural set of such functions which scale homogeneously to infinity, taking
advantage of the same scaling behavior of the reaction rates.

1 Introduction
The recent progress in experimental biology and bioinformatics has sparked renewed interest the theoretical description
of cellular biochemical processes. A common approach in this sense is to model the dynamics of chemical reactions
through mass action kinetics. The most popular formulation of this model is deterministic and describes the dynamics of
the network through a set of ordinary differential equations. These systems of equations approximate the interactions of
the individual molecules involved in the reaction network [8]. An alternative mass action kinetics framework takes into
account the discrete nature of chemical systems by representing their state as the number of molecules of each species
that are present in the reactor. In this formulation, transitions occur when molecules combine as inputs of a reaction and
transform into its outputs, resulting in a jump in the state of the system. The dynamics of these discrete systems can be
modeled stochastically as jump Markov processes [8, Sec. 11, Example C] whose jumping rates are specified, under
the mass action kinetics assumption, by the structure of the chemical network being modeled. It is well know that, for
large number of molecules, the dynamics of stochastic mass action kinetics converge to their deterministic counterpart
[1, 8]. However, when the number of molecules is finite the dynamics of the two families of models can be qualitatively
different. This is the object of study of this paper.

The study of dynamical properties of mass action systems was greatly advanced with the work of Horn and Jackson
[15] and Feinberg [9]. Asymptotic studies in the stochastic setting appear in the probability literature with the work
of Kurtz [8]. More recently, results have appeared on the existence and characterization of the invariant measure
[5, 7] of some classes of Chemical Reaction Networks, abbreviated henceforth as CRNs. Furthermore, in [6], criteria
for recurrence of stochastic mass action models based on the geometry of the underlying CRN have been developed,
working toward the proof of the recurrence conjecture [6]. In this paper we study a specific family of examples
displaying radically different recurrence properties in the discrete framework despite their stable and almost identical
behaviour when modeled deterministically. The different asymptotic behavior stems from the different behavior in
the neighborhood of the horizontal axis which the deterministic dynamics, obtained through a scaling procedure,
ignores. This behavior is similar to the existence of a boundary-layer in singular perturbation theory. We note that a
similar example has independently been presented in the recently submitted paper [3]. We then study the invariant
measure of the presented networks and their convergence to it. In doing so we develop a method for the construction of
Foster-Lyapunov functions (henceforth referred to as simply Lyapunov functions) that to the best of the knowledge
of the authors has never been applied for the study of the stability of this class of systems. This method is based on
dynamic principles and capable of producing Lyapunov functions which address delicate boundary cases between
stability and instability.
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1.1 The model
We consider a set of d species S := {s1, . . . , sd} whose interactions are described by a set of m reactions R :=
{r1, . . . , rm}. Each chemical reaction r ∈ R describes how molecules of different species in the reactor combine as
inputs of r to form its outputs. Then, letting N0 denote the set of nonnegative integers, we represent any r ∈ R as

r :=

{
d∑
i=1

(crin)i ⇀

d∑
i=1

(crout)i

}
,

where crin, c
r
out ∈ Nd0 count the multiplicity of each species as input and output of the reaction r and are respectively

referred to as the input and output complex of r. We also denote by C := {cr# : r ∈ R, # ∈ {in, out}} the set of
complexes. Finally, we uniquely identify a CRN with the corresponding triplet (S, C,R) .

The main object of study of this paper is the behavior of the process Xt ∈ Nd0, counting in each of its components
the number of molecules in the corresponding species at time t. The effect of a reaction r ∈ R on the state of the
network is encoded by the respective reaction vector cr := rrout − crin : When that reaction occurs, the state of the
network jumps as Xt → Xt + cr. The probabilistic dynamics of Xt is modeled as a jump Markov process. The
generator of this process is given under the mass action kinetics assumption by

Lf(x) =
∑
r∈R

Λr(x) (f (x+ cr)− f(x)) =
∑
r∈R

Λr(x)∆rf(x) , (1.1)

for a function f : Nd0 → R, and reaction rates {Λr(Nt)}r defined by

Λr(Nt) = κr

d∏
i=1

(
(Nt)i
(crin)i

)
(crin)i! , (1.2)

for reaction rate constants κr ∈ R>0 and where
(
a
b

)
is the binomial coefficient, set to 0 if b 6∈ [0, a]. Accordingly, we

define the Markov transition kernel Pt associated to the process Xt. The left-action of Pt as a linear operator on the
space of signed measures on Rd+ and right-action of Pt on the space of bounded measurable functions will be denoted
by

(µPt)(A) =

∫
Nd

0

Pt(x,A)µ(dx) and (Ptf)(x) =

∫
Nd

0

f(y)Pt(x,dy) ,

for any measure µ, set A and bounded measurable function f .
The generator (1.1) and the rates (1.2) can be rescaled in a natural way [8] to describe the dynamics of the

concentration vector v−1Xt ∈ (v−1N0)d in a reactor of volume v > 0. Denoting throughout by R+ the set of
nonnegative real numbers, it is well known that in the limit v → ∞ the sample paths of Xv

t with initial condition
limv→∞Xv

0 = x0 ∈ Rd+ converge through a functional law of large numbers to the deterministic trajectories x(t) ∈ Rd+
of the system of ordinary differential equations

dx

dt
=
∑
r∈R

λr(x)cr , with λr(x) := κr

d∏
i=1

x
(crin)i
i where x = (x1, . . . , xd), (1.3)

and initial condition x(0) = x0, provided that a solution to (1.3) exists for the time interval of interest [8, §11, Thm.
2.1]. (1.3) are referred to as deterministic mass action kinetics equations and the regime v →∞ as the fluid limit [8].

1.2 The examples and main results
In this paper we consider the following CRNs:

CRN0 : ∅⇀ A+B , B ⇀ ∅ , 5A+ 2B ⇀ 3B ⇀ 2A , (1.4)
CRN1 : ∅⇀ A+B , A+B ⇀ A , 5A+ 2B ⇀ 3B ⇀ 2A , (1.5)
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CRN2 : ∅⇀ A+B , 2A+B ⇀ 2A , 5A+ 2B ⇀ 3B ⇀ 2A . (1.6)

For each network, we number the reactions from left to right, obtaining R = {r1, r2, r3, r4}. The networks are
displayed in Fig. 1.

5A+ 2B

A+B

3B

A

B

2B

B 2A+B

A 2A

Figure 1: The complex graph of the networks in (1.4)–(1.6). The common reactions in the networks are displayed
as solid arrows, while the reactions that are different in the three examples are dashed. The existence of the reaction
∅⇀ A+B makes the networks asiphonic, and the fact that all the arrows starting on the faces of the reaction polytope
(the grey triangle) point inwards makes the network Strongly Endotactic.

Behavior in the fluid limit regime Under the law of mass action, as the number of molecules in (1.4)–(1.6) goes to
infinity the dynamics of their appropriately rescaled density obeys the system of ordinary differential equations (1.3),
i.e., ,

d

dt

(
x1
x2

)
=

(
1
1

)
+ x51x

2
2

(
−5
1

)
+ (x32 + x#1 x2)

(
0
−1

)
, (1.7)

where # corresponds to the number of the CRN under consideration (e.g. # = 0 for CRN0) and without loss of generality
we have assumed that κr = 1 for all r ∈ R. The latter assumption will continue to hold throughout the paper.

The CRNs defined above belong to the class of Asiphonic Strongly Endotactic networks, introduced in [1, 2]. This
class of CRNs is defined exclusively on structural properties of the networks. These properties on one hand that no
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Figure 2: Stream lines of the vector fields in (1.7) for the networks CRN0 (a), CRN1 (b) and CRN2 (c). The vector fields are
very similar, with the only noticeable differences close to the horizontal (x1) axis in the three figures. Asymptotically,
these differences vanish.
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subset of ∂Rd+ is invariant under the flow of (1.7) (i.e., that such networks can recover from the extinction of any of
their species) and on the other hand the asymptotic stability of (1.7) as t → ∞ [10]. Furthermore, deviations of the
appropriately rescaled stochastic systems (1.4)–(1.6) satisfy a large deviations principle in finite time [1]. Both these
results are obtained by showing that at large concentrations the reactions dominating the sum (1.1) (the ones with input
complexes on the vertices of the shaded polytope in Fig. 1) contribute to pushing the state of the system towards a
compact set in phase space. We note that for CRN0, CRN1 and CRN2 these dominating reaction coincide. Asymptotically,
these networks display therefore the same behavior, as can be seen from the flow lines in Fig. 2.

Behavior at finite size The probabilistic nature of the process Xt requires a different definition of stability than the
one given in the deterministic framework:

Definition 1.1. For a compact set K ∈ Nd0, we denote the return time of the process Xt to K by τK := inf{t >
0 : Xt ∈ K} and say that a the process Xt is positive recurrent if Ex [τK] < ∞, null recurrent if Px [τK <∞] = 1
but Ex [τK] =∞, and transient if Px [τK <∞] < 1.

To infer the stability properties of Xt as defined in Def. 1.1 for the systems (1.4)–(1.6), we study similarly to [12]
whether the following Lyapunov stability condition is satisfied. Here 1A denotes the indicator function on the set A

Condition 1.2 (Stability). There exists a Lyapunov function V with rate ϕ, i.e., a continuous function V : Nd0 → R+

with precompact sublevel sets such that
LV ≤ K 1K − ϕ(V ) , (1.8)

for some constant K > 0, a compact set K and some monotone function ϕ(x) : R+ → R+ .

This condition guarantees that the process returns, on average, to a compact set in Nd0 by bounding form above its
average speed towards that set.

Provided that the stability of the process Xt has been established, we proceed to study its invariant measure,
i.e., a measure µ on Nd0 with µPt = µ . In particular, we are interested in the density of such measure and in the
convergence under the flow defined by Pt of another measure ν to it. Similarly to [12] we obtain such result by
combining Condition 1.2 with the following mixing condition:

Condition 1.3 (Mixing). The level sets of V are “small” enough, i.e., for every CM > 0 and every (x, y) ∈ Nd0 × Nd0
such that V (x) + V (y) ≤ CM , there exists α > 0 and T > 0 such that

‖PT (x, · )− PT (y, · )‖TV ≤ 2(1− α) . (1.9)

Combined with Condition 1.2, this Doeblin-like condition ensures the existence of a “small” attracting region of
phase space where two processes with the same generator mix fast enough before fluctuating out of such region.

We are now ready to describe how, despite their similar asymptotic behaviour in the fluid limit regime, the three
networks in (1.4)–(1.6) display significantly different behavior when modeled probabilistically. This is summarized in
the following result

Proposition 1.4. The stochastic process Xt for the network

(a) CRN0 is positive recurrent and has a unique invariant probability measure µ0 satisfying
∫
N2

0
ϕ(V (x))µ0(dx) <∞.

Any two initial point measures converge exponentially fast to one another, i.e., for any x, y ∈ Nd0 there exists % < 1
and a positive constant C such that for all t > 0 one has

‖Pt(x, · )− Pt(y, · )‖TV ≤ C%t‖P0(x, · )− P0(y, · )‖TV .

Consequently, we have exponential convergence to the invariant measure, i.e., for any x ∈ Nd0 there exists %′ < 1
and a positive constant C ′ such that for all t > 0 one has

‖Pt(x, · )− µ0‖TV ≤ C ′%′t‖P0(x, · )− µ0‖TV .
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(b) CRN1 is null recurrent and has a unique (up to scalar multiplication) σ-finite invariant measure µ1 satisfying∫
N2

0
ϕ(V (x))µ1(dx) <∞.

(c) CRN2 is transient.

We establish the above result in two steps. The first is to construct a Lyapunov function V satisfying Condition 1.2
when Xt is not transient, while the second is to combine Condition 1.2 and Condition 1.3 to obtain the desired estimates
on µ.

The first step is executed by studying the dominant behaviour of the generator L for large values of x. Indeed, as
shown in [2], the phase space can be divided radially (in a certain set of coordinates) into dominance regions where
L acquires asymptotically a particularly simple form. We use this simplification to construct a Lyapunov function
V satisfying (1.8) in each of these regions separately. Finally, we handle the gluing of the locally defined candidate
Lyapunov function. This is done by showing that, under certain convexity conditions on the glued Lyapunov function at
the interface between two adjacent regions, (1.8) is automatically satisfied at that interface.
The strategy adopted for the local construction of V to simplify the verification of (1.8) in a given dominance region
T ⊂ R2

+ pivots on the monomial form of the asymptotic rates λr. Indeed, such rates scale homogeneously under any
scaling transformation. This is true in particular for transformations leaving subsets of T invariant. Hence, constructing
V to also scale homogeneously under such transformations allows to exclude most of the summands in LV by power
counting, reducing the right hand side in (1.8) to a monomial in the scaling variable, whose evaluation is immediate.
Taking also h to scale homogeneously under the same transformation reduces the left hand side of (1.8) to the same
form, significantly simplifying the verification of the desired inequality.

In the second step, the results of Proposition 1.4 are obtained through Condition 1.2 and Condition 1.3 by similar
arguments to the ones developed in [12].

The paper is structured as follows: in Section 2 we study the behavior of the process Xt for small values of (Xt)2.
This is the region where the dynamics of the three examples (1.4)-(1.6) are radically different from one another. This
allows to prove Proposition 1.4 (c). In Section 3 we turn to the piecewise construction of Lyapunov functions for
the study of the stability of the two remaining examples. In Section 3.1 we study the behavior of L, which we use
in Sections 3.2–3.3 to construct V satisfying (1.8) as described above. Section 4 is devoted to the patching of local
Lyapunov functions. Finally, in Section 5 we prove the results about existence of and convergence to the invariant
measure.

2 Stability of CRNs
As explained in Section 1.2 and more precisely in [1], in the limit of large number of molecules the dynamics of
(1.4)–(1.6) is stable under the appropriate scaling. This result relies on the approximation of the reaction rates (1.2)
with monomials by the Stirling formula. This approximation breaks down when at least one component of Xt is O(1),
i.e., Xt is close to the boundary of Rd+. In this regime the stability results above are no longer valid in general and more
careful analysis is needed to infer the dynamical behavior of the networks at hand.

2.1 Boundary Dynamics
In this section we consider the behavior of the three CRNs when (Xt)2 = O(1). Recall that, by definition, some of
the discrete rates Λr(x) of the process Xt will vanish in a neighborhood of the boundary {x2 = 0}. More precisely,
defining throughout T01(n) := {(x1, x2) ∈ N2

0 : x2 < n} we have that the set of reactions {r2, r3, r4} will have
vanishing rate in T01(1), while reactions in {r3, r4} will do the same in T01(2). This intermittent behavior implies that
within T01(2) noise dominates the dynamics of the process Xt and its effects on the three networks differ significantly,
as we see below. We use this to prove part (c) of Proposition 1.4, and to characterize the exit distribution from this
noise-dominated region for CRN0 and CRN1.
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CRN2

Choosing without loss of generality the rate constants κ1 = κ2 = 1 , the reaction rates of the network for x =
(x1, x2) ∈ T01(2) are

Λ1(x) = 1 , Λ2(x) = 1{x2≥1}x
2
1 +O(x1) , Λ3(x) = 0 , Λ4(x) = 0 . (2.1)

Throughout, we define the Markov chain Xn associated to the process Xt stopped when exiting T01(2) as

Xn := X(τn) where τn = inf{t > τn−1 : X(t) 6= X(τn−1) or X(t) 6∈ T01(2)} . (2.2)

(τn is finite with probability one since the jump rate is positive at any point in T01(2)). The possible transitions of Xn

are:

• for Xn = (x1, 0) we jump to Xn+1 = (x1 + 1, 1) with probability 1 ,
• for Xn = (x1, 1) we jump up (↑) to Xn+1 = (x1 + 1, 2) with probability p↑(x1) = 1/(x21 + 1), or down (↓) to
Xn+1 = (x1, 0) with probability p↓(x1) = 1− p↑(x1) = x21/(x

2
1 + 1) ,

• for Xn = (x1, 2) the process is stopped, i.e., Xn+1 = (x1, 2) with probability 1 .

We are now ready to prove Proposition 1.4 (c).

Claim 2.1. The Markov process Xt associated to the CRN (1.6) is transient.

Proof. By irreducibility of Xt we can choose without loss of generality X0 = (k0, 0) for k0 > 0. As Xt and Xn are
equivalent up to time change, it is sufficient to show that the associated Markov chain Xn is transient. To do so, we
bound from below the probability that Xn “oscillates forward” never leaving the tube T01(2): For k ∈ N we denote by
↑k and ↓k the event of jumping up and down, respectively, from site (k, 1). Observe that for any n > k0 > 0 we have

P(k0,0) [Xn ∈ T01(2)] = P

[
n⋂

k=k0+1

↓k

]
≥ 1− P

[
n⋃

k=k0+1

↑k

]
= 1−

n∑
k=k0

p↓(k) = 1−
n∑

k=k0

1

k2 + 1
.

Hence, the claim follows by taking the limit n→∞ in the display above and bounding the right hand side from below
and away from 0 upon choosing k0 large enough.

CRN0 and CRN1

We proceed to characterize the exit distribution of Xt from T01(2) for CRN0 and CRN1. For these networks, the reaction
rates are identical to those in (2.1) except for Λ2( · ), which reads,

CRN0: Λ2(x) = 1 , CRN1: Λ2(x) = 1{x2≥1}x1 .

Consequently, the jumping probabilities of the associated Markov chain Xn remain unchanged except when x2 = 1.
Assuming without loss of generality that κr = 1 for all r ∈ R, we have for Xn = (x1, 1) that

CRN0: p↑(x1) =
1

2
, p↓(x1) =

1

2
, CRN1: p↑(x1) =

1

x1 + 1
, p↓(x1) =

x1
x1 + 1

. (2.3)

Therefore, the exit distribution of Xt from T01(2) is the same as for Xn. Furthermore for X0 = (k0, 0) and b ≥ k0, we
have

P(k0,0) [X∞ = (b+ 1, 2)] := lim
n→∞

P(k0,0) [Xn = (b+ 1, 2)] = P

[
↑b ∩

b−1⋂
k=k0+1

↓k

]
= p↑(b)

b−1∏
k=k0+1

p↓(k) . (2.4)

Combining (2.3) and (2.4) we obtain for CRN0

P(k0,0) [X∞ = (b+ 1, 2)] = (1− a)ab−k0 ,
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where we have defined a = P [↓] = 1/2 the probability of jumping down on level x2 = 1. Similarly for CRN1 we have

lim
n→∞

P(k0,0) [X∞ = (b+ 1, 2)] =
1

b+ 1

b−1∏
k=k0

k

k + 1
=

k0
b(b+ 1)

. (2.5)

Remark 2.2. Using (2.5) and defining k0 := (x0)1 we bound from below the expected hitting time τK of a compact set
K ⊆ Rd+ by

Ex0
[τK] ≥ Ex0

[inf{τ : (Xτ )2 > 1}] ≥
∞∑

k=k0

Px0
[X∞ = (k + 1, 2)]

k∑
j=k0

E
[
∆τ(j,0)

]
≥ x0

∫ ∞
k0+1

k − x0
k(k + 1)

dk ,

where we used that the jumping time δτx at (j, 0) has constant expectation. Hence, for CRN1 we have E [τK] =∞. In
light of this, in order to prove null recurrence it remains to show that Px [τK <∞] = 1. By [18, Theorem 12.3.3] this
is the case if there exists a Lyapunov function satisfying (1.8). We construct such a function in the upcoming section.

3 Local Lyapunov functions
In this section we study the stability of CRN0 and CRN1 by introducing a family of Lyapunov functions V that verifies
Condition 1.2. We outline below the intuition behind the construction of V and will carry out such construction in full
detail in the subsequent sections.

To establish (1.8) we notice that, by boundedness of the function V and of the rates (1.2) on compact sets, it is
sufficient to have

LV (x) ≤ −ϕ ◦ V (x) ∀x ∈ Nd0 \ K , (3.1)

for a compact set K large enough. In other words we are interested in the asymptotic behavior of the left hand side of
(3.1). To explore it we introduce the following family of scaling transformations

Definition 3.1 (Scaling transformations). For any vector w = (w1, w2) ∈ S1 and scaling parameter l ∈ R+ we define
the family of transformations S w

l by

S w
l (x) := (lw1x1, l

w2x2) for x = (x1, x2) ∈ Nd0. (3.2)

Furthermore, we say that a function φ : R2
+ → R scales homogeneously under S w

l if φ ◦S w
l ( · ) = lδφ( · ) for some

δ ∈ R. In this case we write φ w∼ lδ .

For any w ∈ S1 we then obtain (3.1) in a region T that is invariant under (3.2) by showing that for l large enough∑
r∈R

Λr(S
w
l (x))∆rV (S w

l (x)) ≤ −ϕ ◦ V (S w
l (x)) . (3.3)

for all x ∈ Rd+ with ‖x‖1 ≤ 1 and S w
l (x) ∈ Nd0, where we define throughout the difference operator ∆rf(x) :=

f (x+ cr)− f(x).
Let throughout S1

+ be the open positive orthant of S1. Fixing w ∈ S1
+ recall that the rates (1.2) scale, to leading

order, like the ones in (1.3):

Λr(S
w
l (x)) = κr

d∏
i=1

(
lwixi
(crin)i

)
(crin)i! = κrl

〈w,crin〉
d∏
i=1

x
(crin)i
i +O(l〈w,c

r
in〉) = λr(S

w
l (x)) +O(l〈w,c

r
in〉) , (3.4)

and that all the rates λr scale homogeneously under S w
l . Under the key assumption that the same holds for V , i.e.,

provided that there exists a function V ∈ C1(R2
+) and δ : S1 → R+ such that

V (S w
l (x)) = lδ(w)V (x) , (3.5)
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we show that for all r ∈ R we can write

∆rV (S w
l (x)) = lvr(w)∆rV (x) +O(lvr(w)) , (3.6)

for an operator ∆r : C1(Rd+) → C0(Rd+) and a function vr : S1 → R . This allows to obtain the desired result by a
scaling argument: writing the left hand side of (3.3) to leading order in each of its summands as

LV (S w
l (x)) =

∑
r∈R

(
l〈w,c

r
in〉+vr(w)λr(x)∆rV (x) +O(l〈w,c

r
in〉)
)

= lδ
′(w)h(x) +O(lδ

′(w)) , (3.7)

where
δ′(w) := max{δ′r(w) : r ∈ R} for δ′r(w) := 〈w, cinr 〉+ vr(w) (3.8)

and

h(x) := TiV (x) , for Tif(x) :=
∑
r∈Rw

λr(x)∆rf(x) , (3.9)

and Rw := {r ∈ R : δ′r(w) ≥ δ′r′(w)∀r′ ∈ R}, we immediately obtain (3.1) by combining (3.5) with (3.7) and by
defining

ϕ(x) := Chx
δ′(w)/δ(w) for Ch ∈ (0, 1) . (3.10)

Remark 3.2. Assumption (3.5) emerges naturally from the structure of the problem at hand, as encoded by the generator
(1.1). Indeed, by the scaling of the rates (1.2) as monomials for all w ∈ S1, this assumption allows to consider the left
hand side of (3.1) as a polynomial in S w

l . Consequently, for any w ∈ S1 the study of LV reduces to identifying the
term dominating the polynomial under that scaling. This establishes a connection with the domain of tropical geometry
[17].

In the following sections we realize the program outlined above. First of all we characterize the operator ∆ for
which (3.5) holds, and divide the space into regions {T } where the leading term in the approximation of LV is constant.
We then locally construct a region-specific Lyapunov pair (V , h) satisfying the definition (3.7) by solving the Poisson
equation (3.9) in each region, i.e., {

TiV i(x) = −hi(x) for x ∈ Ti
V i(x) = V j(x) for x ∈ ∂Ti

. (3.11)

for a function h w∼ lδ
′(w) and boundary conditions V j

w∼ lδ(w). This way we enforce (3.7) to the first order in the
scaling parameter l. By the leading order expansion we expect such candidate Lyapunov functions to solve (3.1) with ϕ
as in (3.10). We verify that this condition is indeed satisfied in the last paragraph of this section.

3.1 Scaling of the generator

Assuming that for w ∈ S1
+ the function V (x) satisfies (3.5) we have that

LV (S w
l (x)) =

∑
r∈R

Λr(S
w
l (x)) (V (S w

l (x) + cr)− V (S w
l (x)) (3.12)

=
∑
r∈R

l〈c
r
in,w〉+vrλr(x)

(
V (x+ (S w

l )−1(cr))− V (x)
)

+O(l〈c
r
in,w〉+vr ) .

Now, for w ∈ S1
+ we can approximate to leading order the difference terms in (3.12) by partial derivatives. Indeed, for

each r ∈ R we expand V as

V
(
x+ (S w

l )−1(cr)
)

= V
(
xi + l−wicri

)
= V (x) +

∑
i∈Ir

l−wicri ∂iV (x) +O(l−wi) . (3.13)
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where ∂i denotes a partial derivative in direction i ∈ S and we have defined the index set Ir := min{i ∈ supp cr : wi ≤
wj∀j 6= i}. We make this statement precise in Lemma 3.18 below. We see that the dominant term in (3.3) depends on
the chosen vector w. Therefore we can divide S1

+ into regions characterized by different dominating terms in (3.3). In
this case we write:

L ∼ T1 := x51x
2
2(−5∂1) for w ∈ W1 := {w ∈ S1 : w2 > w1 > 0}

L ∼ T2 := x51x
2
2 (∂2 − 5∂1) for w ∈ W2 := {w ∈ S1 : w2 = w1 = 1/

√
2}

L ∼ T3 := x51x
2
2∂2 for w ∈ W3 := {w ∈ S1 : 0 < w2 < w1}

. (3.14)

Remark 3.3. We see that the dominant terms in (3.14) and the dominance regions are the same as the ones of the
deterministic transport generator Tf(x) :=

∑
r∈R λr(x)〈cr,∇f(x)〉, which for CRN0 reads

T :=
(
l−w1∂1 + l−w2∂2

)
+ l−w2(−∂2) + l5w1+2w2x51x

2
2

(
l−w1(−5∂1) + l−w2∂2

)
+ l2w2x32(−∂2) . (3.15)

In this sense, for w ∈ S1
+ the discrete generator (1.1) is well approximated under S w

l by its deterministic, continuous
counterpart T . For w ∈ {(1, 0), (0, 1)} this approximation is not possible because the jumping nature of the process
becomes dominant, as we will see in the upcoming sections.

It is apparent in (3.14) that the point setsW0 := {(0, 1)},W2 = {1/
√

2(1, 1)},W4 := {(1, 0)} limit intervals of
w where one single term dominates the generator. These points uniquely identify radial lines in R2 through the polar
coordinate system with parameters (l, w) ∈ (R+, S

1). In the neighborhoods of these lines, defined throughout as

Wi(ξ) :=

{
(ϑ,w) ∈ R≥1 × Sd−1 : log(ϑ) inf

w′∈Wi

‖(w − w′)‖2 ≤ ξ
}
, (3.16)

we observe a transition between dominant terms of the generator, as depicted in Fig. 3 (a). Such neighborhoods and
their complement define a partition of R2. This partition can be mapped through the component-wise exponential
function to a partition of R2

+ into dominance regions of the generator, as displayed in Fig. 3 (b).

Remark 3.4. The partitionW0, . . . ,W4 defined above corresponds to the partitionW∗1 ∪W∗2 introduced in [2]. (See
[2] for the definition ofW∗1 andW∗2 .) This construction is therefore naturally generalizable to a higher-dimensional
framework. Furthermore, the regions defined in (3.16) correspond, asymptotically in l, to the sets introduced in [2,
Definition 4.16], and the geometric results of [2, Lemma 4.26] therefore directly apply to the problem at hand.

We denote the regions in R2
+ corresponding to the dominant behaviors in (1.1) by Ti for i ∈ (0, . . . , 4). We further

define, throughout, the boundaries separating two regions i and j by Tij := T i ∩ T j , where A denotes the closure of
the set A. In our case these sets can be written as

T01 := {x2 = b0} , T12 := {x2 = x1/b1} , T23 := {x2 = b1x1} , T34 := {x1 = b2} , (3.17)

where the parameters b0, b1, b2 ∈ (1,∞) will be fixed to our convenience at a later point of the analysis. The dominant
behaviors of the generator and the above definitions are summarized in Fig. 3.

Remark 3.5. The boundaries separating different dominating regions of the generator are so-called toric rays and
they partition the phase space into a tropical fan . A similar asymptotic partition was used in [2, 10] always for the
study of CRNs, establishing a connection between this subject and the one of tropical geometry.

3.2 Construction of the Lyapunov function
We now use the partition developed in the previous section to construct a Lyapunov function satisfying (3.9) and scaling
homogeneously as required in (3.5). More precisely we construct such a Lyapunov function V i(x) in each Ti by
solving the Poisson problem (3.11) with ∂Ti = Tij for all j with T i ∩ T j 6= ∅. The reason for this choice of Lyapunov
function is twofold. On one hand, since both Ti and our choice of hi and boundary conditions V j scale homogeneously
under S w

l for w ∈ Wi, we expect the candidate Lyapunov function to also scale homogeneously under the same set

9



W2(4)W3

W1

W0(2)

W4(2)

(a)

T2T3

T1
T0

T4

(b)

Figure 3: The vector field for (3.15) under the S w
l scaling for large l in the coordinates (l, w) for w ∈ S1

+ (a) and in
the original coordinates (x1, x2) (b). In (a) dashed lines denote the radial directions associated toW0,W2,W4. The
corresponding neighborhoodsW0(2),W2(4),W4(2) are mapped by the component-wise exponential into the transition
regions T0, T2, T4 respectively. Solid lines denote transitions between different dominance regions in both coordinate
systems: in (b) T01 in blue, T12 in red, T23 in green and T34 in yellow).

of transformations, thereby satisfying the key assumption (3.5) of Section 3.1. On the other hand, as the function V i
satisfies (3.9) by construction, by the dominance of Ti in Ti and the discussion of Section 3.1 we expect it to satisfy
(3.1) with ϕ as in (3.10).

We solve (3.11) by the method of characteristics, i.e., by direct integration of the right hand side:

V i(x) = Ex
[
V j(Xτi)

]
+ Ex

[∫ τi

0

hi (Xt) dt

]
, (3.18)

where τi := inf{t : Xt 6∈ Ti} is the exit time from Ti and expectations are taken with respect to the dynamics of Xt

with generator Ti from (3.11). We proceed to calculate (3.18) by considering different regions of phase space separately.
In each of these regions we will assume that h scales homogeneously as in Def. 3.1 under a scaling that depends on the
region where they are defined.

Priming region: T4

We start by studying the dynamics of Xt in T4. As displayed in Fig. 3(a) in this region of phase space the process
Xt is rapidly converging to a compact set. For this reason, we call T4 the priming region. We establish (3.1)
asymptotically by using the transformation from Def. 3.1 that leaves T4 invariant, i.e., S w

l with w = (0, 1). We seek to
obtain the Lyapunov function by solving (3.11) with the assumption that both h4 and the boundary condition V ∗4 on
T ∗4 :=:= {(x, y) ∈ N2

0 : x = 0} scale homogeneously under such transformation. In order to realize this program we
first identify the dominant terms of the generator L under the scaling S w

l . We proceed similarly to (3.12) and assuming
that (3.5) holds we obtain

LV (S w
l x) = l3x32

(
V (x1, x2 − l−1)− V (x)

)
+ l2

(
x1
5

)
x22
(
V (x1 − 5, x2)− V (x)

)
+O(l2). (3.19)
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where we have not approximated the binomial coefficients involving x1 as (3.4) does not hold in this regime and used
that the first difference term on the right hand side scales as l−1to leading order by Taylor expansion. In light of this we
write the asymptotic generator in T4 as

T4f(x) = x32 (f(x1, x2 − 1)− f(x)) +

(
x1
5

)
x22 (f(x1 − 5, x2)− f(x)) . (3.20)

Remark 3.6. Because w1 = 0 , in this region (3.4) and (3.13) cannot be used to approximate (3.19) by a first order
differential operator with monomial rates as in (3.12). In particular, despite being significantly simplified with respect
to its original form, the operator T4 remains the one of a jump Markov process. In this sense, the discrete nature of the
problem at hand is “felt” by the Lyapunov function only close to ∂R2

+.

We now proceed to propagate the Lyapunov function in T4 by using (3.18). To do so we specify the behavior of V
on the boundary T ∗4 . Denoting throughout by ei the unit vector in direction i ∈ S, by computing the two terms on the
right hand side of (3.18) for T4 as in (3.20) we obtain the following result.

Lemma 3.7. The function

V4(x) := m∗4x
δ∗4
2 + h4

x1∑
k=1

kδ
′
4

δ′′4 − 2 +
(
k
5

)
5!
x
δ′′4−2
2 , (3.21)

approximating the solution of (3.11) with

h4(x) := h4x
δ′4
1 x

δ′′4
2 and V ∗4 (x) := m∗4x

δ∗4
2 , (3.22)

for h4 ∈ R+ and m∗4 ∈ R+ is a well defined local Lyapunov function for all x = (x1, x2) ∈ T4 and all δ∗4 , δ
′′
4 > 0,

δ′4 ∈ R. Furthermore assuming that
δ′′4 − 2 = δ∗4 , (3.23)

we have V4
w∼ lδ4 for w = e2 and δ4 := δ∗4 .

Proof. Under the assumptions of this lemma we show in the appendix that the solution to (3.11) is well-defined and can
be approximated by (3.21). We immediately notice that this function scales homogeneously under S w

l for w = e2 iff
δ′′4 − 2 = δ∗4 . We now show that this function is a local Lyapunov function on T4 for the generator T4. Computing

T4V4(x) = x22

(
x1
5

)
5! (V4(x− 5e1)− V4(x))− x32∂2V4(x)

≤ −
(
x1
5

)
5!

h4

δ4 + 5
(
x1

5

)
5!
x
δ′′4
2 −

(
m∗4 +

x1∑
k=1

h4

δ4 +
(
k
5

)
5!

)
δ4x

δ′′4
2 ≤ −C(m∗4 + h4) ,

for a constant C > 0.

Transport regions: T1, T2 and T3

Recall from (3.14) and Remark 3.3 that for w ∈ S1
+ the scaled generator L(S w

l x) converges to a transport operators
{Ti}. For this reason we call regions T1, T2 and T3 transport regions. In these regions, we obtain the solution to the
Poisson equation (3.11) by the method of characteristics (3.18), as we do below.

We further recall that in L is approximated by Ti under the family of scalings S w
l for w ∈ Wi. For this reason

instead of defining one scaling that maps the interior of the region Ti to a compact we explore the asymptotic behavior
of L and the candidate local Lyapunov function V i through a family of scaling transformations. We use this fact to
prove (3.1) by the scaling analysis of Section 3.1 carried out for all w ∈ Wi. To do so we need to assume that hi scales
homogeneously under all such transformations, i.e., that there exists δi : S1 → R such that

hi
w∼ lδ

′
i(w) ∀w ∈ Wi . (3.24)

This condition is in particular satisfied by choosing hi to be a monomial, as we do below. We start by T3.
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Lemma 3.8. The Lyapunov function V 3 solving (3.11) with

h3(x) := h3x
δ′3
1 x

δ′′3
2 and V4(x) = m4x

δ4
2 , (3.25)

for h3 > 0 and m4 = m4(b2) > 0 is well defined for all x = (x1, x2) ∈ T3 and all δ4 > 0, δ′′3 ∈ R and δ′3 6= 4 .
Furthermore, for the choice of constants

δ′3 > 4 , δ′′3 − 2 = δ4 and h3 = (δ′3 − 4)m4b
−(δ′3−4)
2 , (3.26)

we can write V 3(x) = h3(δ′3 − 4)x
δ′3−4
1 x

δ′′3−2
2 .

Proof. By the method of characteristics we obtain V 3 satisfying (3.11) by integrating h3 along the solutions of the set
of ordinary differential equations ẋ = T3x. Recalling by (3.14) that such solutions are moving from x1(0) to b2 on
lines with x2(t) = x2(0), by our choice (3.25) of boundary condition on T34 we obtain

V 3(x) = m4x
δ4
2 +

∫ x1

b2

h3z
δ′3x

δ′′3
2

1

z5x22
dz = m4x

δ4
2 −

h3
δ′3 − 4

b
δ′3−4
2 x

δ′′3−2
2 +

h3
δ′3 − 4

x
δ′3−4
1 x

δ′′3−2
2 ,

where we have assumed that δ′3 > 4. This function is clearly well defined in R2
+ for all choices of parameters. Now we

see that in order for V 3 to scale homogeneously under S w
l for all w ∈ W3 we need (3.26) as h3 > 0. This directly

implies that V 3 has the desired form.

Remark 3.9. The requirement of having a Lyapunov function V that scales homogeneously under all transformations
S w
l for w ∈ Wi can be relaxed to having V scale homogeneously under S w

l for w = (1, 1)/
√

2. This method allows
to construct a larger family of Lyapunov functions. However, in this case attention must be paid not to construct
candidate Lyapunov functions that diverge at the boundary. We carry out such an alternative construction in the regions
T1, T2, T3 in the appendix.

Proceeding to construct the candidate local Lyapunov function in T2, we notice that this region is invariant under S w
l

for w = (1, 1)/
√

2. Defining throughout for any x ∈ Ti, πijx as the projection of x onto Tij along the characteristics
of Ti in Ti we construct V 2 assuming that h2( · ) scales homogeneously under that transformation:

Lemma 3.10. The Lyapunov function V 2 solving (3.11) with

h2(x) := h2(x1 + 5x2)δ
′
2 and V3(π23x) = m3(x1 + 5x2)δ3 , (3.27)

for h2 > 0 is well defined for all x = (x1, x2) ∈ T2 and all δ′2 ∈ R, δ3 > 0. Furthermore, for the choice of constants

δ′2 = δ′3 + δ′′3 , (3.28)

we have V 2
w∼ lδ2 for w = (1, 1)/

√
2 and δ2 := δ′2 − 6 .

Proof. We again find the solution to (3.11) in T2 by the method of characteristics. Denoting by γ3(x, π23) the path
along the characteristic of T2 starting at x and ending at π23x and noting that h2( · ) defined in (3.27) is constant on
such a path we have

V 2(x) = V3(π23x) + h2(x1 + 5x2)δ
′
2

∫
γ3(x,π23x)

1

z51z
2
2

dz . (3.29)

Consequently, using that π23x = (x1 + 5x2)(1 + 5b1)−1(1, b1) we write the explicit result of the integral as

V 2(x) = m3(x1 + 5x2)δ3 +
h2
12

(x1 + 5x2)δ
′
2−6 5 + b−11

1− b−21

(P (b1)− P (x2/x1)) , (3.30)

for P (x) := −(12/x) + 3000x+ 7500x2 + 12500x3 + 9375x4 + 300 log x, δ3 := δ′3 + δ′′3 − 6 and m3 = m3(b1) :=
h3(b1)δ

′′
3 (1 + b1)δ3 . Since the difference term is scale–invariant under S w

l for w = (1, 1) we obtain the homogeneous
scaling behavior of (3.30) iff δ3 = δ′2 − 6, leading to (3.28).
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Remark 3.11. The homogeneous scaling behavior of V 2 in (3.30) could also be derived without explicit integration of
(3.29). Indeed, since both the integrand and the path length of γ scale homogeneously in l under S

(1,1)/
√
2

l , one must
have V 2

w∼ lδ′2−7+1 for w = (1, 1)/
√

2 in T2 (up to a constant that increases in the parameters b0, b1).

We conclude by considering the region T1. Similarly to the case of T3 we construct a local Lyapunov function
choosing a function h1 that scales homogeneously under the family of scaling transformations S w

l for w ∈ W1.

Lemma 3.12. The Lyapunov function V 1 solving (3.11) with

h1(x) := h1x
δ′1
1 x

δ′′1
2 and V 2(x) = m2x

δ2
1 ,

for h1 > 0 is well defined for all x = (x1, x2) ∈ T2 and all δ2 > 0, δ′1, δ
′′
1 ∈ R with δ′′1 6= 1 . Furthermore, for the

choice of constants
δ′′1 < 1 , δ′2 = δ′1 + δ′′1 and h1 = m2 (1− δ′′1 )b

δ′′1−1
1 , (3.31)

we can write V 1(x) = h1(1− δ′′1 )−1x
δ′1−5
1 x

δ′′1−1
2 .

Proof. We obtain the Lyapunov function by integrating along the characteristic lines of the transport operator T1.
Noting that these lines satisfy x1(t) = x1(0) for all t > 0 we write

V 1(x) = V 2(π12(x)) + h1

∫ x2

x1/b1

x
δ′1
1 y

δ′′1
1

x51y
2

dy = m2x
δ2
1 −

h1
1− δ′′1

x
δ′1−5
1 (x1/b1)δ

′′
1−1 +

h1
1− δ′′1

x
δ′1−5
1 x

δ′′1−1
2 ,

(3.32)
for

m2(b1) = m3(1 + 5/b1)δ3 +
h2
12

5 + b−11

1− b−21

(P (b1)− P (b−11 ))(1 + 5/b1)δ2 > 0 . (3.33)

We immediately recognize that the right hand side of (3.32) scales homogeneously under S w
l for w ∈ W1 if (3.31)

holds, resulting in the desired definition for V 1( · ) .

Diffusive region: T0, T ′0
Because noise dominates the behavior of the process for small values of x2, throughout we refer to T0 as the diffusive
region.

First, we continue to T0 the Lyapunov function generated in the previous sections {x2 = b0} by propagation through
(3.18) in the transition region T ′0 := {x ∈ N2

0 : x2 ∈ [2, b2]}. Here, expectations are taken with respect to the process
Xt with asymptotic generator

T ′0f(x) := k3x
5
1

(
x2
2

)
(f(x1, x2 + 1)− f(x)) . (3.34)

This generator approximates the rate Λr(x) as a power in the components that diverge under the scaling S w
l for the

chosen w while leaving the binomial formulation in the components that are not affected by such scaling. We refer to
such a generator as a semi-continuous approximating generator.

Lemma 3.13. The function V ′0 defined in (3.18) with h′0(x), V1(x) given by

h′0(x) := h′0x
δ′′0
1 and V1(x) = m1x

δ1
1 ,

for h′0 > 0 and m1 = m1(b1) > 0 is well defined for all x = (x1, x2) ∈ T ′0 and all all δ′′0 ∈ R, δ1 > 0. Furthermore,
for the choice of constants

δ1 = δ′′0 − 5 , (3.35)

we have that V
′
0(x)

w∼ lδ1 for w = e1.
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Proof. The above result is obtained by directly applying (3.18) for the dominant generator T ′0 from (3.34):

V
′
0(x) = m1x

δ0
1 + h′0x

δ′′0−5
1

b1∑
k=x2

(
k

2

)−1
,

which scales homogeneously under S w
l for w = e1 iff (3.35) holds.

We now consider the region T0. By our fundamental assumption, we choose h0 and V
′
0 to scale homogeneously

under the transformation that leaves the set T0 invariant (S w
l for w = e1), i.e.,{

h0(x) := h0x
δ′0
1

V
′
0(x) := m′0x

δ0
1

for δ′0 ∈ R , δ0 ∈ R+ , h0,m0 ∈ R+ . (3.36)

We then obtain the following result for the propagated local Lyapunov function in T0:

Lemma 3.14. Let V0 be the function defined on T0 through (3.18) with h0(x), V
′
0(x) specified in (3.36). Then, for CRN0

V0 is well defined for all choices of δ0 ∈ R+ and δ′0 ∈ R, while the same is true for CRN1 only if δ0 < 1 and δ′0 < 0. If
the above conditions are satisfied and we choose δ0 > 0, there exists a decreasing, positive function m0 : (1, 2)→ R+,
such that the function

V0(x) =

{
m0(x2)xδ01 for x2 ∈ (1, 2)

m0(1)(x1 + 1)δ0 + h0x
δ′0
1 for x2 = 0

, (3.37)

is a Lyapunov function in T0 setting δ′0 = δ0 for CRN0 and δ′0 = δ′0 + 1 for CRN1.

Proof. see appendix.

Remark 3.15. The Lyapunov function (3.37) does not scale homogeneously as x1 →∞ when x2 = 0. The leading
order dynamics (3.13), which simply moves back and forth between x2 = 0 and x2 = 1 without changing x1, does not
faithfully capture the governing dynamics as x1 → ∞. Rather than performing a systematic singular perturbation
analysis, we choose to keep the entire generator in this region. Therefore we must choose a Lyapunov fiction which
captures the interplay between terms in the generator and hence can not scale homogeneously.

Combining the continuity conditions presented in Lemmas 3.7–3.13, we obtain the following relationships between
the exponents of our Lyapunov functions:

δ′1 = δ′′0 = 5 + δ0 , δ′′1 = δ′2 − 5− δ0 , δ′2 = δ′3 + δ′′3 , δ′′3 = δ′′4 = δ∗4 + 2 .

Furthermore, the condition on compact sublevels sets of the Lyapunov function reads:

δ0 > 0 , δ′′1 < 1 , δ′2 > 6 , δ′3 > 4 .

In particular, for any ε ∈ (0, δ0/2) the following choice of constants works for CRN1:

δ0 ∈ (0, 1) , δ′0 = δ0 , δ′1 = δ′′0 = 5 + δ0 , δ′′1 = 1− ε , δ′2 = 6 + δ0 − ε ,
δ′3 = 4 + ε , δ′′3 = 2 + δ0 − 2ε , δ4 = δ0 − 2ε . (3.38)

We introduce the ε > 0 in the definition of δ′1 and δ′′1 in (3.38) to enforce the conditions on δ′′1 and δ′3 stated in
Lemma 3.12 and Lemma 3.8 respectively. In doing so, we ensure that V1 = C −

∫ x2

1
s−1±εds = −x±ε2 + C scales as

a power. When ε = 0, V1 = −
∫ x2

1
s−1ds = log x2. This logarithmic scale would complicate the analysis. Having

chosen ε > 0, the Lyapunov functions Vi scale at least as lδ0−2ε under the relevant transformations.
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3.3 Verification of the stability condition
We now proceed to prove that the local Lyapunov functions defined in the previous section satisfy asymptotically the
boundary value problem for the full generator (1.1) as stated in Lemma 3.16.

Lemma 3.16. Let i index a region of phase space. Then there exists a compact set K and a constant Ch > 0 such that
the Lyapunov pair (Vi, hi) satisfies

LVi(x) ≤ −Chhi(x) for all x ∈ Ti ∩ Kc . (3.39)

To prove Lemma 3.16, we apply the full generator (1.1) to the candidate local Lyapunov function Vi obtained in the
previous section and show that the corrections to the leading order term hi are negligible for large l. We proceed by
considering each region of phase space separately.

Diffusive region: T0

In the diffusive region T0, the full generator of the Markov process was used to construct the Lyapunov function in
Lemma 3.14, so (3.39) holds by construction. In particular, for x2 = 0 we have

LV0(x) = Λ1(x)∆1V0(x) = m0(1)(x1 + 1)δ0 − (m0(1)(x1 + 1)δ0 + h0x
δ′0
1 ) = −h0x

δ′0
1 ,

as expected. Similarly, for x2 = 1 we obtain for CRN1 that for x1 large enough

LV0(x) =

2∑
i=1

Λi(x)∆iV0(x) = m0(2)(x1 + 1)δ0 −m0(1)xδ01 + x1(m0(1)(x1 + 1)δ0 + h0x
δ′0
1 −m0(1)xδ01 )

≤ (m0(2)−m0(1))xδ01 +m0(1)δ0x
δ0
1 + h0x

δ′0+1
1 . (3.40)

For small enough h0 > 0, because δ′0 + 1 = δ0 < 1 the right hand side of the above expression is negative upon
choosing m0(2) ∈ (0,m0(1)(1− δ0)− h0) .

We now proceed to establish (3.39) in the region T ′0 as a special case of the following result. To do so, we define the
semi–continuous approximation to the reaction rates Λr in direction w ∈ ∂S1

+ as follows:

λwr (x) := κr
∏

i∈S\Pw

x
(crin)i
i

∏
i∈Pw

(
xi

(crin)i

)
(crin)i! ,

where we have defined Pw := {i ∈ S : wi = 0} .

Lemma 3.17. For any i ∈ S, b, b′ ∈ N0 with b′ > b ≥ maxR(crin)i let T := {x ∈ N2
0 : xi ∈ (b, b′)}. Then if

Rw = {r∗}, (3.39) holds on T for l large enough.

Proof. To study the behavior of LV under S w
l for w = ej we start by writing

∆rV (S w
l (x)) = (V (S w

l (x) + cr)− V (S w
l (x) + cri ei)) + (V (S w

l (x) + cri ei)− V (S w
l (x))) . (3.41)

and proceed to consider the two difference terms separately. We start by the second term, corresponding to a jump in
direction i ∈ Pw, and write

V (x+ cri ei)− V (x) = −Ex

cri−1∑
k=0

h(x+ kei)∆τx+kei

 = −
cri−1∑
k=0

h(x+ kei)

λwr∗(x+ kei)
≤ cri max

|k|<|cri |

(
h(x+ kei)

λwr∗(x+ kei)

)
,

(3.42)
where r∗ ∈ RW and ∆τx is the exponentially distributed jumping time of Xt at x ∈ Nd0. Similarly, in the case of r∗

using that h(x) > 0 we have

V (x+ cr
∗

i ei)− V (x) = −
cr
∗

i −1∑
k=0

h(x+ kei)

λwr∗(x+ kei)
≤ − h(x)

λwr∗(x)
. (3.43)
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At the same time by combining our homogeneous scaling assumption with Taylor theorem for the second term we have

V (S w
l (x) + cr)− V (S w

l (x) + cri ei) ≤ lδ−1(∂jV (x+ cri ei) + l−1Rrj,j(x+ cri ei, l)) , (3.44)

where V is C2 in the j direction and we define the remainder Rri,j(y, l) := supa∈(−1,1) |∂i∂jV (y + l−1aei)|. Fur-
thermore, we note that there exists a constant Crλ > 0 such that for all r ∈ R and all x ∈ Nd0 such that x − crin ≥ 0
componentwise we have

Crλλr(x) ≤ Λr(x) ≤ λr(x) , (3.45)

where the right inequality holds by definition while the left one results from the increasing character of x−a
(
x
a

)
in

x > a for a > 0.
Combining (3.42)–(3.45) and using the boundedness of V in any compact set we obtain, for any x ∈ πT := {x ∈

T : xj = 1},

LV (S w
l (x)) =

∑
r∈R

Λr(S
w
l (x)) (V (S w

l (x) + cr)− V (S w
l (x)))

≤
∑
r∈R

Λr(S
w
l (x))

(
V (x+ cri ei)− V (x) + lδ−1(∂jV (x+ cri ei) + l−1Rrj,j(x+ cri ei, l))

)

≤ −lδ
′(w)

(
h(x)

Cλr − l−1c∗ ∑
r∈R\Rw

Λr(x)

h(x)
max
|k|<|cri |

h(x+ kei)

λwr∗(x+ kei)

+ l−1

(∑
r∈R

Λr(x)CV

))
,

where in the second inequality we have used that h(x)
w∼ lδ+〈cr

∗
in ,w〉, that Λr(S w

l x)/λwr∗(S
w
l x) ≤ l−1Λr(x)/λwr∗(x)

for all r ∈ R \ Rw if w ∈ {ei} and we have bounded from above the derivative terms ∂jV (x+ cri ei) + l−1Rrj,j(x+
cri ei) ≤ CV on the compact πT . The boundedness of the x-dependent term in square brackets on the right hand side of
(3.3) on the finite set πT and the divergence of l prove the desired result.

Transport regions: T1, T2 and T3

As anticipated in the previous section, the function V i on T1 (resp. T3) is assumed to scale homogeneously under S w
l

for all w ∈ W1 (resp. W3). We use this fact to explore the asymptotic behavior of V i by writing every point z ∈ Rd+ in
terms of toric coordinates (ϑ,w) :

(
Rn+
)o → R>1 × Sn−1 defined by

ϑ(z) := exp(‖ log((2c∗)−1z)‖2) , w(z) : =
1

log ϑ(z)
log((2c∗)−1z) where z = [ϑ(z)w(z)i ]i∈S

with c∗ := supr∈R{‖crin‖1, ‖crout‖1} and log : Rd+ → Rd represents the component-wise logarithm. This transforma-
tion maps a c∗ neighborhood of any point x ∈ Nd0 such that xi > 2c∗ to the c∗-neighborhood of the point z∗ with
z∗i := c∗ for all i ∈ S.

Under the assumption of homogeneous scaling of the Lyapunov function, the generator of the Markov process can
be asymptotically approximated along toric rays in S1

+ by the generator of the transport process from (3.15). This
convergence happens pointwise in w, and is therefore not sufficient for ensuring the required scaling property, which
must hold uniformly in w. This uniform convergence is established in Lemma 3.18 below.

Lemma 3.18. For all ε > 0 and r ∈ R there exist Cr ∈ (1− ε, 1 + ε) and CX > 0 such that for all w ∈ S+ we have,
for l large enough,

LV (S w
l (x)) ≤

∑
r∈R

l〈c
r
in,w〉+vr(w)Crλr(x)〈(S w

l )−1(cr),∇V (x)〉 for all x ∈ Nd0, xi > CX ∀i ∈ S .(3.46)

Proof. Consider the scaling of the generator (1.1) along an arbitrary toric ray. By definition of the transformation in
(3.3) it is sufficient to know the value of V on a compact set K∗ to obtain through a scaling transformation the values of
V outside of K∗.
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Using the homogeneity of V we bound the differences ∆r from (3.41) similarly to (3.44):

V (S w
l (x) + cri ei)− V (S w

l (x)) ≤ lvr−wi(∂iV (x) + l−wiRri,i(x)) ,

V (S w
l (x) + cr)− V (S w

l (x) + cri ei) ≤ lvr−wj (∂jV (x+ l−wicri ei) + l−wjRrj,j(x+ l−wicri ei))

≤ lvr−wj (∂jV (x) + l−wiRri,j(x) + l−wjRrj,j(x+ l−wicri ei)) ,

where we have chosen the indices i, j ∈ S such that wj ≥ wi > 0. Note that by the boundedness of V and its partial
derivatives, we have that supK∗(R

r
i,i +Rrj,j +Rri,j) ≤ K for all r ∈ R. Consequently, choosing CX large enough for

l−wi < ε/6K for all i ∈ S we have

∆r(V ◦S w
l (x)) ≤ C ′λ

(
l−w1cr1∂1V (x) + l−w2cr2∂2V (x)

)
, (3.47)

where C ′λ ∈ (1− ε/3, 1 + ε/3). Because of limx→∞ x−a
(
x
a

)
a! = 1 we can choose the constant Crλ ∈ (1− ε/3, 1) in

(3.45) upon possibly increasing CX further, and we finally obtain the desired result by combining (3.45) with (3.47)
and upon choosing Cr := C ′λ · Crλ.

We now use the above result to prove that the candidate Lyapunov function satisfies (3.39). Denoting by Tij(a) :=
{x ∈ R2

+ : infy∈Tij ‖x− y‖2 < a} we use approximation (3.46) for S w
l (x) ∈ Ti \

⋃
j Tij(CX) for CX large enough

and we obtain

LV i(S w
l (x)) ≤

∑
r∈R

lvr(w)
∑
i∈S

l〈c
r
in−ei,w〉Crλr(x)cri ∂iV (x) . (3.48)

We note that the dynamics associated to the operator on the right hand side are, up to a change of constants κr, the mass
action ordinary differential equations for the CRN (S,R′, C′) with

R′ := {(r, i) ∈ R× S : cri 6= 0} and C′in := {cr,iin : (r, i) ∈ R′} , (3.49)

where we define cr,iin := crin − ei and to each (r, i) ∈ R′ we associate a reaction vector cr,i := cri ei. Furthermore, we
define for w ∈ S1

+ the set of reactions that are exposed by all w ∈ W as

R′W := {(r, i) ∈ R′ : 〈cr,iin , w〉 ≥ 〈c
r′,i′

in , w〉 ∀ (r′, i′) ∈ R′, w ∈ W} . (3.50)

We recognize that the regionsW0,...,4 correspond to the partitionW∗ associated to the convex hullW of points in
C′in as defined in [2] and proceed to apply [2, Lemma 4.26 (d)] to the present framework. To map this problem to the
one in [2] we make the change of notation R(P)+ → RW′j where w ∈ W , R(P)− → R′ \ R′W and ϑ→ l, so that
Kε(ϑ)→ C ′X/ log l. Doing so we have that for all w ∈ W(C ′X) 1

〈cr
′,i′

in − cr,iin , w〉 ≤ −C
′
X/ log l for all (r, i) ∈ R′Wj

, (r′, i′) ∈ R′ \ R′Wj
. (3.51)

Using (3.51) we bound the exponent of the scaling parameter for the subdominant terms in (3.48) obtaining that for any
ε > 0 we can choose C ′X large enough such that

λr′(S
w
l (x)) ≤ ε/mλr(S w

l (x)) for all r ∈ RWj
, r′ ∈ R \ RWj

.

Now, using that vr(w) = δ(w)−minS wi for all r ∈ R and that the derivatives of V are bounded away from 0 in K∗,
we see that for all w ∈ Wj \

⋃
kWk(C ′X) there exist for all r ∈ R constants C ′r(ε) ∈ (1− 2ε, 1 + 2ε) such that we

have
LV (S w

l (x)) ≤
∑

(r,i)∈R′Wj

l〈c
r,i
in ,w〉+vr(w)C ′r(ε)λr(x)cri ∂iV (x) .

Recalling definition (3.8), by continuity in ε of the right hand side and knowing that (3.39) holds for Ch = 1 in the
limit ε→ 0 we obtain desired result (3.39) for any Ch ∈ (0, 1) upon choosing ε small enough.

1recall that the set (3.50) is nonempty for an W by [2, Remark 4.21].
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Priming region: T4

Recalling that the propagated Lyapunov function in this region approximates the solution to (3.11) with the ansatz (3.23)
for the leading order generator T4f =

(
x1

5

)
x22(f(x− 5e1)− f(x)) + x32(f(x− e2)− f(x)), we have for w = e2 that

LV4(S w
l (x)) = T4V4(S w

l (x))) + (L − T4)V4(S w
l (x)) = lδ

′′
4

[
T4V 4(x) + l−δ

′′
4 (L − T4)V4(S w

l (x))
]
. (3.52)

We proceed to show that the second term in the square brackets goes to 0 as l → ∞. By (3.42) and (3.44) we can
approximate (up to a multiplicative constant Cr > 0) for large x2 the difference terms in direction x2 with partial
derivatives, and obtain

(L − T4)V4(x) =
∑
r1,r2

Λr(x)(V4(x+ cr)− V4(x))

≤ −Crx2∂2V 4(x) + Cr∂2V 4(x+ e1) + (V 4(x+ e1)− V 4(x)) + 1{x1≥5}Crx
2
2∂2V 4(x− 5e1)

≤ xδ4+1
2 Crδ4h4

(
1{x1≥5}B5(x1)G(x1 − 5) +

G(x1 + 1)

x22
+
G(x1)

x2
+

1

x2δ4(δ4 +B5(x1 + 1))

)
.

where G(x1) :=
∑x1

i=1(B5(i) + (δ′′4 − 2))−1 and B5(i) :=
(
i
5

)
5! and we used that δ4 + 2 = δ′′4 from (3.23). Finally,

we bound the right hand side of the above expression by CB5(x1)G(x1)xδ4+1
2 for a large enough C > 0 and we obtain

that the second term in (3.52) scales as l−1, proving the claim.

4 Assembling a global Lyapunov function
This section is devoted to verifying that the local Lyapunov functions defined in the previous sections can be assembled
to generate a global Lyapunov function. To guarantee that this is the case, we show that at the interface between
two contiguous nonoverlapping regions of phase space the application of the generator to the global candidate global
Lyapunov function is indeed negative and scales as required. We prove this in three steps. First, we introduce an
intuitive condition for the assembly between two regions with candidate local Lyapunov functions solving (3.11) to
be a global Lyapunov function on the union of such domains. Then, we show that for any hj there exists a choice of
parameters hi > 0 such that the assembly works automatically for all the interfaces. Finally, we show that the choice
of parameters above does not affect the relevant properties of the candidate global Lyapunov function far from the
patching boundary.

4.1 A condition of natural assembly
In a recent series of papers [13, 14], the problem of assembling local, homogeneously scaling Lyapunov functions was
studied to prove stability of a certain family of diffusion processes. In that paper the authors show, under geometric
assumptions related to the convexity of the (continuously assembled) Lyapunov function across the boundary separating
two contiguous regions of phase space, that the assembled Lyapunov function automatically satisfies the desired
Foster-Lyapunov condition on the union of those regions, and in particular on their common boundary. We will refer to
these conditions as the interface curvature condition. It ensures that the term, analogous to the Tanaka or flux term
derived in [20], have the properties needed to avoid the often less intuitive smoothing/mollification procedures used in
this assembly process. In the continuous diffusions setting, this flux term arises in the generalized Itô formula, called
Tanaka’s formula, because the Lyapunov function is only C1 along the interface rather than the usual C2 required by
Itô’s formula.

In this section, we adapt such conditions for “natural assembly” of local Lyapunov functions to the discrete
setting. To establish the interface curvature condition, we study the behavior of LV close to an interface between two
neighboring regions Ti and Tj with respective local Lyapunov function Vi and Vj to identify the equivalent of Tanaka’s
term in our setting. We take V to be the (asymptotically) continuous assembly of Vi and Vj along Tij . We immediately
note that, in general, only those terms corresponding to jumps across Tij will feel the discontinuity, as represented
in Fig. 4. We refer to such terms as cross-terms, and denote the corresponding reactions as Rc(x). Then, assuming
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r1

r2

r3
x

Figure 4: Representation of the possible jumps of the process at x ∈ R2 close to the boundary between two regions
with different local Lyapunov functions (in red and blue). In the generator L, only summands corresponding to jumps
across the boundary (r3) will feel the difference, while all the other terms will not (r1 and r2).

without loss of generality that x ∈ Ti we can write

LV (x) =
∑

r∈R\Rc(x)

Λr(x) (Vi(x+ cr)− Vi(x)) +
∑

r∈Rc(x)

Λr(x) (Vj(x+ cr)− Vi(x))

= LVi(x) +
∑

r∈Rc(x)

Λr(x) [Vj(x+ cr)− Vi(x+ cr)]

= LVi(x) +
∑

r∈Rc(x)

Λr(x)
[
(V j(x+ cr)− V j(x+ βr(x)cr))− (V i(x+ cr)− V i(x+ βr(x)cr))

]
,(4.1)

where in the last equation, for every r ∈ Rc(x) we have chosen βr(x) ∈ (0, 1) such that x+ βr(x)cr ∈ Tij and we
have used the continuity of V . Throughout, we will refer to term in square brackets in (4.1) as the Tanaka or Flux term
FrV (x) and define the operator ∇x,rVi := (V i(x+ cr)− V i(x+ βr(x)cr)) .

To prove the result of this section, we now note that LV (x) satisfies (3.11) along Tij if

Condition 1 (Interface Flux Condition). For all x ∈ Nd0 such that Rc(x) 6= ∅, for any r ∈ Rc(x) one of the two
following conditions holds:

(a) the Tanaka term is of negative sign i.e., FrV (x) < 0, or
(b) it is dominated in absolute value by LV in the scaling that leaves Tij invariant.

Throughout we refer to the condition above as interface flux condition. It ensures that the term generated by any jump
across the boundary either has the correct sign to be comparable with direction of the desired inequality if neglected or
that it scales in such a way to be negligible when compared to the dominant term along the relevant paths to infinity.

Condition 1 (a) can be directly verified in a simple and geometrically intuitive way considering the convexity
property of the Lyapunov function across the interface. To introduce the notion of V̄ on a boundary Tij we define
throughout the function Tij : Rd+ → R whose zero-level set is the surface Tij i.e., Tij = {x ∈ Rd+ : Tij(x) = 0} .

Definition 4.1 (Discrete Interface Curvature). We define the scalar curvature of the Lyapunov function V across the
boundary Tij as

κ(V , x) := lim
ε→0
〈c⊥(x),∇V (x+ εc⊥)−∇V (x− εc⊥)〉 , (4.2)

where c⊥(x) := ∇Tij(x)/‖∇Tij(x)‖2 and Tij is invariant under S w
l for a w ∈ S1

+. For interfaces Tij that are
parallel to ∂R2

+, i.e., that are invariant under S w
l for w ∈ {e1, e2} we define for |α| ≤ c∗ the discrete curvature of V

at x ∈ Tij as
κα(V , x) := V i(x+ αc⊥(x))− V j(x+ αc⊥(x)) . (4.3)
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Now, if the curvature (4.2) resp. (4.3) is negative, the value of the function V j in a point across but close enough to
the interface is smaller than the one of the Lyapunov function V i continued analytically to the same point. As shown in
Lemma 4.2 below, this makes the term FrV (x) negative and automatically verifies Condition 1 (a).

Lemma 4.2 (Discrete Interface Curvature Condition). Let Tij be invariant under S w
l for w ∈ S1

+. If κ(V, x) < 0 for
all x ∈ Tij [respectively κα(V, x) < 0 for all x ∈ Tij(c∗), |α| < c∗] with ‖x‖2 large enough, then FrV (x) < 0 for all
x ∈ Tij .

Proof. We start by proving the desired result for κ(V , x), i.e., if w ∈ S1
+. By Lemma 3.18 we can write for all

r ∈ Rc(x) that ∇r,xV j(x) = 〈cr,∇V j(x∗r)〉 + ε for ε small at will provided that x∗r := x + βr(x)cr ∈ Tij is large
enough. Then, defining cr⊥(x) := c⊥(x∗r)〈c⊥(x∗r), c

r〉 we write

FrV (x) = 〈cr,∇V j(x∗r)−∇V i(x∗r)〉 = 〈cr⊥(x∗r),∇V j(x∗r)−∇V i(x∗r)〉+ 〈cr − cr⊥(x∗r),∇V j(x∗r)−∇V i(x∗r)〉 .

By continuous differentiability of V along the boundary we note that the second term on the right hand side vanishes
and we obtain the desired result by identifying the first summand with (4.2).

We now proceed to consider κα(V , x). Noting that in this case x+ cr − cr⊥(x∗r) ∈ Tij we obtain

FrV (x) = V i(x+ cr)− V j(x+ cr) = V i((x+ cr − cr⊥(x∗r)) + cr⊥(x∗r))− V j((x+ cr − cr⊥(x∗r)) + cr⊥(x∗r)) .

Identifying the right hand side of the above equation with κα(V , x + cr − cr⊥(x∗r)) for α = |c⊥(x∗)|/(1 − βr(x))
completes the proof.

Remark 4.3. We recall that the negativity of the curvature (4.2) and (4.3) is related to the existence of super- and
sub-solution to the partial differential equation (3.11) across the boundary Tij .

4.2 Scaling at the boundary
Assuming that the constructed Lyapunov function is continuous at the boundary, use Remark 4.1 to avoid the customarily
lengthy calculations needed to assemble local Lyapunov functions between different definition domains. The idea relies
on the tuning of the parameter hi > 0 in the regions at the interface in order to make the curvature conditions (4.2),
(4.3) in Remark 4.1 automatically verified. In our case, however, this cannot be done in full generality, as the following
example shows.

Example 4.4. We consider the partition of phase space for the networks (1.4)–(1.6) with boundaries (3.17) and study
the convexity of the assembly of V2 and V1 in a neighborhood of T12. To do so, by our homogeneous scaling assumption
and by the assumed continuity of the assembled function V along T12, it is sufficient to consider (4.2) for c⊥ = −cr3 .

In this case, for x ∈ T12 we have by (3.18) and (3.26) that

〈cr3 ,∇V 2(x)〉 = 〈cr3 ,∇y
∫ x+y

π12(x+y)

h2(z)

λ3(z)
dz〉 = −‖cr3‖1

h2(x)

λ3(x)
= −‖cr3‖1

h2(x1 + 5x2)δ
′
2

x51x
2
2

, (4.4)

where we recall that πij is the projection of points in Ti onto Tij along the characteristic lines used to construct hi and
in the last equality we have used that the characteristics in T2 are parallel to cr3 . Similarly, for V1 we have

〈cr3 ,∇V 1(x)〉 = 〈cr3 ,∇
[
h1x

δ′1−5
1 x

δ′′1−1
2

]
〉 = −h1

(
5
δ′1 − 5

x1
+

1− δ′′1
x2

)
x
δ′1−5
1 x

δ′′1−1
2 . (4.5)

In particular for x ∈ T12, i.e., for x1 = b1x2 we have for (4.4) and (4.5), respectively

〈cr3 ,∇V 2(x)〉 = −‖cr3‖1h2(5/b1+1)δ
′
2b21x

δ′2−7
1 , 〈cr3 ,∇V 1(x)〉 = −h1 (5(δ′1 − 5) + (1− δ′′1 )b1) b

1−δ′′1
1 x

δ′1+δ
′′
1−7

1 .
(4.6)
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Now, recalling from (3.31) that h1 = m2(1− δ′′1 )b
δ′′1−1
1 , we combine this with the expression (3.33) for m2 to obtain

the upper bound

〈cr3 ,∇V 1(x)〉 ≤ −m′2(b1)h2x
δ′2−7
1 for m′2(b1) :=

(1− δ′′1 )2(b−11 + 5)

12(1− b−21 )
(P (b1)− P (b−11 ))b1 .

Combining the estimates from above we have that

x
7−δ′2
1 〈cr3 ,∇V 2(x)−∇V 1(x)〉 ≥ −‖cr3‖1h2(5/b1 + 1)δ

′
2b21 +h2m

′
2(b1) = h2

(
m′2(b1)− ‖cr3‖1(5/b1 + 1)δ

′
2b21

)
,

We see that the sign of above expression, which bounds the sign of the curvature κ(V , x) from below, is positive for
large b1 and independent of the parameter h2 > 0. This parameter can therefore not be used to correct the curvature
of V at this interface. Because the parameter b1 was already bounded from below in the previous section, and that
limb1→∞m′2(b1)/b21 =∞ we see that there is no choice of parameters bi, hi s.t. (4.2) is satisfied in the general case.

We circumvent the problem highlighted in Example 4.4 by introducing a construction to tune the curvature of V on
the boundary of interest while affecting only marginally its value on that set. This is possible because the value of V
at the interface is obtained by integration of hi(x) in (3.18) across the set Ti while the gradient∇V is a strictly local
quantity, i.e., it only depends on the choice of hi( · ) close to the boundary. In particular, changing the value of hi(x)
in a small enough neighborhood of Tij will change the value of∇V but will have little effect on V . We perform this
change along the characteristics of the asymptotic generator Ti and in a “smooth” way, i.e., over many small enough
steps, in order for (3.39) to hold at the interface between regions where hi(x) is varied.

To realize the program outlined above (in this particular case of T2), we dissect the problematic region Ti into ni
nonoverlapping radial subsets {T (k)

i }k∈(1,...,ni) with T (j)

i ∩ T
(j′)

i = ∅ if |j − j′| > 1. In each cone, we then define

the local Lyapunov functions V
(k)

i by (3.18) with

h
(j)
i (x) := (η∗i )jhi(x) ,

for η∗i > 1 and all j > 0. The procedure outlined above constructs a discrete interpolation given by the set-function

pairs {T (j)
i , V

(j)

i }j∈1,...,ni . We denote the new candidate local Lyapunov function assembled over the union of all T (j)
i

by Ṽi( · ), namely

Ṽi(x) := V
(k)
i (x) for x ∈ T (k)

i .

Lemma 4.5. Assume that Ti is invariant under S w
l for a w ∈ Wi and thatRWi

= {r∗}. Then for any ε > 0, M > 1

in the partition {T (j)
i , V

(j)

i }j∈1,...,ni
constructed above, the value of ni, η∗i and the sets T (j)

i can be chosen so that Ṽi
is a Lyapunov function on Ti and for all x ∈ Tij large enough, one has

|V i(x)− Ṽi(x)| ≤ εV i(x) and |〈c⊥,∇Ṽi(x)〉| ≤M |〈c⊥,∇V i(x)〉| . (4.7)

Proof. We prove the above result in two steps: First of all we show that for certain η∗i the assembled Ṽi is a Lyapunov
function on Ti. Then, we construct the sets T (j)

i such that, by choosing ni large enough the bounds in (4.7) hold.

Note that the functions V
(j)

i are local Lyapunov functions by Lemma 3.16. Therefore we only have to show that
one can safely assemble the local terms V (j)

i to give a Lyapunov function Ṽ on Ti. In particular, we proceed to show
that for every ε∗ > 0 there exists a η∗i > 1 such that for all x ∈ T (j)

i (c∗) and all r ∈ Rc(x) we have

mΛr(x)|FrV (x)| ≤ ε∗|h(j)i | . (4.8)

By definition of V
(j)

i and V
(j+1)

i we have that∣∣∣∇x,rV (j)

i −∇x,rV
(j+1)

i

∣∣∣ ≤ (η∗i − 1)

∫ x+cr

πij(x+cr)

∣∣∣∣∣h(j)i (z)

λwr∗(z)

∣∣∣∣∣dz ≤ (η∗i − 1)c∗ sup
y∈Bc∗ (z)

(
h
(j+1)
i (y)

λwr∗(y)

)
. (4.9)
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Figure 5: Representation of the characteristic lines (solid vectors) of the dominant generators in the transport regions.
The regions with different dominant generators are separated by dashed lines: Black dashed lines represent the original
separation of dominance regions Tij while the green ones arise from the construction of Ṽi. The grey regions represent
the diffusive and the priming regions. In the inset, the direction of the derivative in (4.4) across the boundary T12 is
represented as a red vector. The parameter α defines the slope of T12 and T23, so cosα = b−11 .

where we have used the formulation of (3.18) in the deterministic regime as done in Lemmas 3.8–3.12. Furthermore,
using (3.45) and the homogeneous scaling behavior of h(0)i (x) we have that for all r ∈ R and z ∈ Tij(c∗) with ‖z‖2
large enough

sup
y∈Bc∗ (z)

Λr(z)/λr∗(y) ≤ 1 sup
y∈Bc∗ (z)

h
(j+1)
i (y)/h

(j+1)
i (z) ≤ 2 .

Combining this result with (4.9) we obtain that there exists a C > 0 such that

Λr(x)|FrV (x)| ≤ Λr(x)
∣∣∣∇x,rV (j)

i −∇x,rV
(j+1)

i

∣∣∣ ≤ C (η∗i − 1)h
(j+1)
i (x) .

Combining this with Lemma 3.16 and choosing η∗i close enough to 1 then establishes (4.8). Combining this result with
Lemma 3.16 proves that (3.39) holds on Ti for a new constant C = C − ε∗ > 0.

We now proceed to the second part of the proof. Here, we restrict our attention to x ∈ Tij . We immediately obtain
the second inequality in (4.7) by noticing that

〈c⊥,∇V i〉 =
hi(x)

λr∗(x)
= (η∗i )ni

h
(ni)
i (x)

λr∗(x)
= (η∗i )ni〈c⊥,∇Ṽi〉 ,

and upon choosing ni = logη∗i M . For the first part of (4.7) we write

Ṽi(x)− Ṽi(πijx) =

ni∑
i=0

∫ x

πijx

1
z∈T (j)

i

h
(j)
i (z)dz

λr∗(x)
dz ≤

∫ x

πijx

h
(0)
2 (z)dz

λr∗(x)
+

∫ x

πijx

1
z∈(T (0)

i )c
h
(0)
i (z)dz

λr∗(z)

ni∑
j=1

((η∗i )j−1) .

(4.10)
Because V i(πijx) = Ṽi(πijx) we obtain the desired result by bounding the second summand on the right hand side of
(4.10). In doing so, upon possibly decreasing η∗i further to have η∗i ∈ (1, 2), we write

|V i(x)− Ṽi(x)| =
ni∑
j=1

((η∗i )j − 1)

∫ x

πijx

1
z∈(T (0)

i )c
h
(0)
i (z)dz

λr∗(z)
≤ ni2ni sup

y∈γi(x)

h
(0)
i (y)

λr∗(y)
εi(T (0)

i , x), ,

where γi(x) denotes the characteristic curve connecting the origin of such curve on the boundary Tij′ 6= Tij to the point
x ∈ Tij and we have written εi(T (0)

i , x) :=
∫ x
πijx

1
z∈(T (0)

i )c
dz. We note that εi(T (0)

i , x) ≥ 0 is decreasing in the size
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of T (0)
i , i.e., with respect to the partial order induced by the operation of set inclusion, with lower bound εi(Ti, x) = 0.

Now, by the homogeneous scaling assumptions (3.5) and (3.6), by the invariance of T (j)
i under S w

l , for x ∈ Tij and
because S w

l (γi(x)) = γi(S w
l (x)) we have that

|V i(S w
l (x))− Ṽi(S w

l (x))| ≤ εilδ
′
i−〈c

r∗
in ,w〉+1

(
sup

y∈γi(x)

h
(0)
i (y)

λr∗(y)

)
.

Recall that along Tij , Ṽi(x) and V i(x) can only differ by a multiplicative constant, so we have

V i ◦S w
l (x) = lδ

′
i−〈c

r∗
in ,w〉+1Vi(x) .

Combining this with the boundedness of both supy∈γi(x)
h
(0)
i (y)

λr∗ (y)
and Vi(x) we obtain the desired result by choosing

T (0)
i large enough for ε(T (0)

i , x) ≤ Vi(x)/ supy∈γi(x)
h
(0)
i (y)

λr∗ (y)
.

4.3 The assembly process
We now apply the results obtained in the previous section to show that the local Lyapunov functions from Section 3 can
be intuitively assembled to give a global Lyapunov function V on the whole phase space.

Bulk interfaces: T12 and T23

In this section we assemble the local Lyapunov functions at the interfaces T12 and T23. In both cases we can approximate
the generator by its dominant transport part Ti defined in (3.14) by Lemma 3.18.

We start by T12, where by Lemma 4.2 we can assemble the local Lyapunov functions naturally if we can find
parameters for which κ(V , x) < 0 on T12. In turn, this condition holds if we can show that

〈cr3 ,∇V 1(x)〉 > 〈cr3 ,∇V 2(x)〉 .

Writing the terms above as in (4.6) and using (3.28) we obtain the desired inequality through the construction of
Lemma 4.5 for a fixed ε > 0 and setting M > 0 such that

h1

(
5
δ′1 − 5

b1
+ 1− δ′′1

)
b
δ′1−5
1 < M‖cr3‖1h2(5b1 + 1)δ

′
2b−51 .

Similarly for T23, we study the convexity of the assembled candidate Lyapunov function V obtained by combining
V2 and V3 on the respective regions by considering the r3 directional derivative across the boundary. For V2 and
x ∈ T12, we have similarly to (4.4) that

〈cr3 ,∇V 2(x)〉 = −‖cr3‖2h2(5 + b1)δ
′
2b−21 x

δ′2−7
1 .

Comparing this to the corresponding expression for V 3, i.e.,

〈cr3 ,∇V 3(x)〉 = 〈cr3 ,∇
[
h3x

δ′3−4
1 x

δ′′3−2
2

]
x2=b1x1

〉 = −h3(b2)

(
5 (δ′1 − 4)− δ′′3 − 2

b1

)
b
δ′′3−2
1 x

δ′3+δ
′′
3−7

1 .

we see that by (3.26) we have κ(V , x) < 0 for b1 large enough if

h3(b2)5 (δ′1 − 4) b
δ′′3
1 > ‖cr3‖1h2(5 + b1)δ

′
2 .

This in turn holds upon choosing h2(b1, b2) > 0 small enough, and we obtain by Lemma 4.2 that Condition 1 (a) is
satisfied at this interface.
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Boundary interface: T00, T01 and T34

In this section we prove that the discrete interface curvature is negative for the interfaces where the continuum
approximation Lemma 3.18 is not applicable, i.e., T00, T01 and T34.

We start by T34. In this case, for x = (b2, x2) with b2 large enough the discrete curvature term reads

κα(V , x) = −h4xδ42
b2+α∑
k=b2+1

kδ
′
4

δ4 +
(
k
5

)
5!

+ h3(b2 + α)δ
′
3−4x

δ′′3−2
2 ≤ xδ42

(
h3c
∗b
δ′3−5
2 − h4b

δ′4
2

δ4 +
(
b2+c∗

5

)
5!

)
, (4.11)

where without loss of generality we consider α ∈ (1, c∗), in the last inequality we have expanded (b2 − α)δ
′
3−4 in b2

and we have applied (3.23) and (3.26). Recalling from (3.26) that h3(m4, b2) = (δ′3 − 4)m4b
−(δ′3−4)
2 and our choice of

δ′3 = δ′4 from (3.38), while bounding m4 from below for δ′4 > 5 as

m4 −m∗4 = h4

b2∑
k=1

kδ
′
4

δ4 +
(
k
5

)
5!
≥ h4

∫ b2−1

1

kδ
′
4−5dk =

h4
δ′4 − 4

((b2 − 1)δ
′
4−4 − 1) ,

we obtain that to leading order in b2 the right hand side of (4.11) reads,

κα(x, V ) = xδ42

(
c∗

h4
δ′4 − 4

b
δ′4−4
2 b−12 − h4b

δ′4−5
2 +O(b

δ′4−6
2 )

)
.

Therefore, for large enough b2 (possibly increasing it from Section 3.1), the discrete interface curvature is negative
upon choosing

δ′4 > c∗(δ′3 − 4) + 4 .

We now turn to the interface T01 := {x : x2 = b0}. Here we evaluate for x ∈ T01

κα(V , x) = V
′
0(x+ e2)− V 1(x+ e2) = xδ21

(
h′0

b2+1∑
k=b2

(
k

2

)−1
−
∫ b2+1

b2

yδ
′′
1−2dy

)
.

which has negative sign by choosing h′0(b2, h1) > 0 small enough. Combining this with Lemma 4.2 guarantees that
Condition 1 (a) holds at this interface, ensuring natural assembly.

To conclude, we establish (3.11) on the only interface between two regions that do not share a dominant reaction:
T00 := {x ∈ N2

0 : x2 = 2}. Because V ′0 is not defined for x2 = 1, in this case we have to estimate the cross-term of
the differential LV explicitly, as we do below. Setting x2 = 2 we have that

LV (x) = Λ3(x)∆3V
′
0 + Λ1(x)∆1V

′
0(x) + Λ2(x)∆2V0(x) , (4.12)

and we compute the three summands separately. For the first one we have, for large x1 and δ1 = δ′1 − 5 that

Λ3(x)∆3V
′
0 = Λ3(x)

(
V ′0(π12(x− 5e1))− V ′0(π12x) +

h′0
2

(
(x1 − 5)δ1

3∑
k=b0

(
k

2

)−1
− xδ11

2∑
k=b0

(
k

2

)−1))

≤ −2x
δ′1
1

h′0
2

(
1− 5δ1x

−1
1

3∑
k=b0

(
k

2

)−1)
= −h′0x

δ1+5
1 C3(x1, b0) , (4.13)

for a C3 with limx1→∞ C3(x1, b0) = 1, where in the last passage we have expanded the difference terms in x1, used
that V ′0(π12x) is increasing in x1 and that

(
x1

5

)
5! ≤ x51. Similarly to (4.13), we bound the second term in (4.12) from

above by

Λ1(x)∆1V
′
0 = m1b

−(δ′′1−2)
1

(
(x1 + 1)δ1 − xδ11

)
− h′0

(
(x1 + 1)δ1

3∑
k=b0

(
k

2

)−1
− xδ11

2∑
k=b0

(
k

2

)−1)
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≤ −xδ11 h′0

(
1 + δ1x

−1
1

(
m1

b
δ′′1−2
1 h′0

+

3∑
k=b0

(
k

2

)−1))
= −h′0x

δ1
1 C1(x1, b0, b1) . (4.14)

for a C1(x1, b0, b1) with limx1→∞ C1(x1, b0, b1) = 1 for b0, b1 fixed. For the third term in (4.12) we have by (3.37)

Λ2(x)∆2V0 = Λ2(x) (V0(x1, x2 − 1)− V0(x)) = xδ0+#
1 (m0(1)−m0(2)) , (4.15)

where # is 0 for CRN0 and 1 for CRN1. Therefore, recalling that δ0 = δ1 from (3.38), a comparison of the exponents of
(4.13)–(4.15) shows that for large x1 and x ∈ T00, we haveLV (x) ≤ −(1−ε(x1, b2))h′0(x) for limx1→∞ ε(x1, b2) = 0
as required.

4.4 Summary
Given the involved nature of the process carried out in the previous sections, we summarize for the reader the order of
choice of parameters for the construction of our global Lyapunov function V . First off, one starts by setting all the
powers of the homogeneous functions {Vi, hi}, i.e., δi, δ′i (and δ′′i when available) as in (3.38), except for δ′4 that will
be fixed later. Then one proceeds to check that the propagated Lyapunov functions satisfy (3.11) in the regions Ti,
thereby fixing large enough constants {bi}. Finally, one has ensure that the natural assembly condition (4.1) holds
on the interfaces Tij . This last step is performed sequentially from the priming region through the transport regions
to the diffusive regions and fixes, in the order, δ′4, h4, h3(b2), h2(b1, h3), h1(h2, b1), h′0(h1, b0), h0(h′0, b0). Recall
that by (4.4) we also have to construct the regions T (j)

2 . During this procedure we choose M(h1, b1) large enough
and consequently n2(M,η∗2). In doing so, the parameter h1 is increased by a constant ε small at will, so this has only
marginal effect on the choice of the subsequent parameters. Finally, choosing a large enough % > 0 ensures that (1.8)
holds for ‖x‖2 > %.

5 Large time asymptotics
This section is dedicated to the study of the invariant measure of the CRNs (1.4) and (1.5).

5.1 Invariant measure density
We now proceed to prove the existence and uniqueness of the invariant measure for a processXt satisfying Corollary 1.2
through the following, standard result.

Lemma 5.1 ([12, 18]). Under Conditions cnd:stability and 1.3 there exists a σ-finite invariant measure µ for the
process Xt. Furthermore, if ϕ > 1 then there exists a constant Cµ > 0 such that∫

ϕ(V (x))µ(dx) ≤ Cµ . (5.1)

Proof. The existence of an invariant measure under the assumptions of the lemma was established in [18, Theorem
12.3.3]. The finiteness of the integral in (5.1) is established in [18, Theorem 14.0.1] and in [12] for the case of positive
recurrent process, as for CRN0. We adapt the proof to the null recurrent case below.

Let f ∈ Cb(R2
+) be compactly supported. Then, denoting for any set B ⊂ Nd0 by τB the first return time to that

set and by mB an probability distribution on B at time t = 0 we define for any N > 0 as in [19, Theorem 3.5.3.] the
measure νN by

νN (A) := EmB

[∫ N∧τB−1

0

1A(Xs)ds

]
. (5.2)

Then, using assumption (1.8) and Dynkin’s formula we obtain, for a compact B ⊇ K,

νNϕ(V (x)) = EmB

[∫ τB∧τ{‖x‖2≥N}

0

ϕ(V (Xs))ds

]
≤ −EmB

[∫ τB∧τ{‖x‖2≥N}∧N

0

LV (Xs)ds

]
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≤ EmB
[V (X0)] ≤ sup

x∈B
V (x) ≤ Cµ . (5.3)

The uniform in N finiteness of the upper bound (5.3) and the convergence of νN to the invariant measure of Xt for
N →∞ proves the desired result by application of Fatou’s lemma.

Lemma 5.1 allows to bound the invariant measure density from above: by finiteness of (5.1) and since
∫
‖x‖−d−εdx <

∞ we can bound from above the tails of the invariant measure by writing, for any ε > 0,

µ(dx) <
(
‖x‖d+εϕ(V (x)

)−1
dx .

The exponential convergence to the invariant measure in the case of CRN1 is a standard result [11] under Assump-
tions 1.2 and 1.3, provided that there exist γ > 0 such that h(x) > γV (x). To see that this condition is satisfied in our
case, it is sufficient to note that in Lemmas 3.7–3.14 the scaling exponent of hi is always larger or equal than the one of
Vi in all the regions Ti.
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Appendix

A Explitic estimates
Diffusive Region. In this section we evaluate (3.18) in the region T0. We do so by considering the sets {x1 = 0} and
{x1 = 1} separately.

For both CRN0 and CRN1 we see that for x = (x1, 0) the first term of (3.18) reads

E(x1,0) [V ′0(Xτ )] = E(x1+1,1) [V ′0(Xτ )] ,

while for the second term we have

E(x1,0)

[∫ τ

0

h0(Xt) dt

]
= h0x

δ′0
1 E

[
∆τ(x1,0)

]
+ E(x1+1,1)

[∫ τ

0

h0(Xt) dt

]
.

Therefore, we obtain
V0((x1, 0)) = V0(x1 + 1, 1) + h0x

δ′0
1 , (A.1)

thereby reducing the problem to the computation of V0 on the set {x2 = 1}, as we do in the next paragraph.
For CRN0 we calculate the first expectation in (3.18) for x = (x1, 1) by writing

E(x1,1)

[
m0(Xτ )δ01

]
=

∞∑
k=x1

E(x1,1)

[
m0(Xτ )δ01 | ↑k

]
P(x1,1) [↑k] =

∞∑
k=x1

kδ0(1− a)ak−x1 ,

where a = P [↓k] < 1 and the definition of the event ↓k was given in Claim 2.1. Bounding the right hand side from
above and below by integration produces

∫ ∞
1

ek log a(k + x1)δ0dk ≤
Ex
[
m0(Xτ )δ01

]
m0(1− a)

≤
∫ ∞
0

ek log a(k + x1)δ0dk .
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From this we see that for CRN0 the first term in (3.18) is well-defined for all choices of δ0 and behaves asymptotically
as V0

e1∼ lδ0 . We will keep only the term corresponding to this scaling for the formula (3.37), as the remaining terms are
negligible in the scaling of interest.

Similarly, for CRN1 we have by (2.5)

E(x1,1)

[
m0(Xτ )δ01

]
= m0

∞∑
k=x1

E(x1,1)

[
(Xτ )δ01 | ↑k

]
P(x1,1) [↑k] =

∞∑
k=x1

kδ0
x1

k(k + 1)
.

The sum on the right hand side of the above expression can be bounded from above and below by integration

x1

∫ ∞
1

(k + x1)δ0−2dk ≤ E(x1,1)

[
(Xτ )δ01

]
≤ x1

∫ ∞
0

(k + x1)δ0−2dk .

By the divergence of the integral on the left hand side for δ0 ≥ 1 and the convergence of the one on the right hand side
for δ0 < 1 we obtain the desired well-definiteness result for V0. The dominant scaling behavior for this component of
the sum is given by V0

e1∼ lδ0 by the result of the two integrations above.
We now proceed to estimate the second term on the right hand side of (3.18). Using the scaling properties of h0( · )

and using the linearity of the expectation we have

E(x1,1)

[∫ τ

0

h0 (Xt) dt

]
=

∞∑
k=x1

E(x1,1)

[∫ τ

0

h0 (Xt) dt| ↑k
]
P(x1,1) [↑k]

=

∞∑
k=x1

Ex

[
k∑

l=x1

h((l, 1))∆τ(l,1) + h((l, 0))∆τ(l,0)| ↑k

]
P(x1,1) [↑k]

=

∞∑
k=x1

k∑
l=x1

lδ
′
0E
[
∆τ(l,1) + ∆τ(l,0)

]
P(x1,1) [↑k] . (A.2)

Evaluating (A.2) for CRN0 with h0(x) = h0x
δ′0
1 yields

E(x1,1)

[
h0

∫ τ

0

(Xt)
δ′0
1 dt

]
= h0

∞∑
k=x1

k∑
l=x1

lδ
′
0E
[
∆τ(l,1) + ∆τ(l,0)

]
P(x1,1) [↑k]

= h0a
−x−1

∞∑
k=x1

e− log(1/a)k
k∑

l=x1

lδ
′
0

(
1

κ1 + κ2
+

1

κ1

) ∣∣∣∣∣
κ1=κ2=1

=
3

2
h0a
−x1−1

∞∑
k=x1

e− log(1/a)k
k∑

l=x1

lδ
′
0 ,

Now, similarly to what was done for the first term of (3.18) we bound the right hand side of the above equation from
above and below by integration:

∫ ∞
1

dk e− log(1/a)k

∫ k

0

dl (x1 + l)δ
′
0 ≤

E(x1,1)

[
h0
∫ τ
0

(Xt)
δ′0
1 dt

]
h0

≤
∫ ∞
0

dk e− log(1/a)k

∫ k

0

dl (x1 + l)δ
′
0 .

Bounding the right hand side from above by xδ
′
0 +

∫∞
0

dk e−kkδ
′
0+1 we see that it is well defined for all values of

δ′0 ∈ R and it scales as lδ
′
0 to leading order.

Similarly, for CRN1 we rewrite (A.2) using (2.5) as

E(x1,1)

[
h0

∫ τ

0

(Xt)
δ′0
1 dt

]
= h0

∞∑
k=x1

k∑
l=x1

lδ
′
0El
[
∆τ(l,1) + ∆τ(l,0)

]
Px1

[↑k]
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= h0

∞∑
k=0

x1
(x1 + k)(x1 + k + 1)

k∑
l=x1

lδ
′
0

(
1

l + 1
+ 1

)
.

We bound from above and below (up to an approximating constant) the right hand side by

x1

∫ ∞
0

dk
1

(x1 + k)2

∫ x1+k

x1

dl lδ
′
0 =

x1
δ′0

∫ ∞
0

dk
x
δ′0+1
1 − (k + x1)δ

′
0+1

(k + x1)2
. (A.3)

We notice that the right hand side of the above expression converges only if δ′0 < 0. If this condition holds we have that
V0

e1∼ lδ′0+1.
Combining (A.1) and the scaling behavior of (3.18) on {x : (x1, 1)} results in (3.37).

Priming region. As in the case of the diffusive region, we couple the process at hand with a new process, denoted by
Xn, jumping to the left (←) or down (↓) with the respective site-dependent probabilities

Px [←x] =
x22
(
x1

5

)
5!

x32 + x22
(
x1

5

)
5!

=

(
x1

5

)
5!

x2 +
(
x1

5

)
5!

and Px [↓x] =
x32

x32 + x22
(
x1

5

)
5!

=
x2

x2 +
(
x1

5

)
5!
.

Consequently, the hitting distribution of the set {x : x1 = b2 − 1} by the process Xn with initial condition
X0 = (b2, x2) and x′2 ≤ x2 is given by:

P(b2,x2)

[
←(b2,x′2)

]
= P(b2,x2)

[
←(b2,x′2)

| ↓(b2,x2...x′2)

]
P(b2,x2)

[
↓(b2,x2...x′2)

]
= P(b2,x′2)

[
←(b2,x′2)

] x′2−1∏
k=x2

P(b2,k)

[
↓(b2,k)

]
=

=

(
b2
5

)
5!

x′2 +
(
b2
5

)
5!

x2∏
k=x′2+1

k

k +
(
b2
5

) =
B5(b2)

x′2 +B5(b2)

Γ(x2 + 1)

Γ(x′2 + 1)

(
Γ(x2 +B5(b2) + 1)

Γ(x′2 +B5(b2) + 1)

)−1
= B5(b2)

Γ(x′2 +B5(b2))

Γ(x′2 + 1)

Γ(x2 + 1)

Γ(x2 +B5(b2) + 1)
,

where Γ( · ) is the gamma function and we have written B5(x) :=
(
x1

5

)
5!. For large values of x2, x′2 we approximate

P(b2,x2)

[
←(b2,x′2)

] e2≈ B5(b2)x
′B5(b2)−1
2 x

−B5(b2)
2 , (A.4)

where from now on the symbol
e2≈ denotes equality up to subdominant terms in S w

l for w = e2. Iterating over multiple
levels from b2 to 0, we obtain for the first term of (3.18) for V4( · ) scaling homogeneously as V4

e2∼ lδ4 by

E(b2,x2) [V4(Xτ )]

m∗4
=

x2∑
x′2=0

P(b2,x2) [Xτ = x′2] (Xτ )δ42

=

x2∑
kb2=0

P(b2,x2)

[
←(b2,kb2 )

] kb2∑
kb2−1=0

P(b2−1,kb2 )

[
←(b2−1,kb2−1)

]
· · ·

k2∑
k1=0

P(1,k2)

[
←(1,k1)

]
kδ41

=

x2∑
kb2=0

B5(b2)
Γ(x2 + 1)

Γ(x2 +B5(b2) + 1)

Γ(kb2 +B5(b2))

Γ(kb2 + 1)

kb2∑
kb2−1=0

B5(b2 − 1)
Γ(kb2 + 1)

Γ(kb2 +B5(b2 − 1) + 1)

· · ·
k2∑
k1=0

B5(1)
Γ(k2 + 1)

Γ(k2 +B5(1) + 1)

Γ(k1 +B5(1))

Γ(k1 + 1)
kδ41
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=

b2∏
j=1

B5(j)
Γ(x2 + 1)

Γ(x2 +B5(b2) + 1)

x2∑
kb2=0

Γ(kb2 +B5(b2))

Γ(kb2 +B5(b2 − 1) + 1)
· · ·

k2∑
k1=0

B5(1)
Γ(k1 +B5(1))

Γ(k1 + 1)
kδ41

e2≈
∏b2
j=1B5(j)

x
B5(b2)
2

∫ x2

0

dkb2k
B5(b2)−B5(b2−1)−1
b2

∫ kb2

0

· · · kB5(2)−B5(1)−1
2

∫ k2

0

dk1 k
B5(1)−1+δ4
1

e2≈
∏b2
j=1B5(j)∏b2

j=1(B5(j) + δ4)
xδ42 =

xδ42∏b2
j=1(1 + δ4/B5(j))

. (A.5)

We note that the product on the right hand side of the above expression converges for large values of b2.
We now proceed to evaluate the integral term of (3.18). Choosing h4 as in (3.22) and summing over all paths γ

from (b2, x2)→ T ∗4 we obtain we have

E(b2,x2)

[∫ τ

0

h4(Xt)dt

]
= h4

∑
γ : (b2,x2)→T ∗4

P(b2,x2) [γ]
∑
x∈γ

x
δ′4
1 x

δ′′4
2 Ex [τx]

= h4

x2∑
kb2=0

P(b2,x2)

[
←(b2,kb2 )

] [
b
δ′4
2

 k
δ′′4
b2

k3b2 + k2b2B5(b2)
+

x2∑
j=kb2

jδ
′′
4

j3 + j2B5(b2)

+

· · ·+
ki+1∑
ki=0

P(i,ki+1)

[
←(i,ki)

] [
iδ
′
4

 k
δ′′4
i

k3i + k2iB5(i)
+

ki+1∑
j=ki

jδ
′′
4

j3 + j2B5(i)

+

· · ·+
k2∑
k1=0

P(1,k2)

[
←(1,k1)

] k
δ′′4
1

k31 + k21B5(1)
+

k2∑
j=k1

jδ
′′
4

j3 + j2B5(1)

] . . .] .
Furthermore, because we are in the limit x2 →∞ we approximate the terms in round brackets as

k
δ′′4
i

k3i + k2iB5(i)
+

ki+1∑
j=ki

jδ
′′
4

j3 + j2B5(i)

e2≈
∫ ki+1

ki

dj jδ
′′
4−3 =

1

δ′′4 − 2

(
k
δ′′4−2
i+1 − k

δ′′4−2
i

)
,

we obtain

E(b2,x2)

[∫ τ

0

h(Xt)dt

]
e2≈ h4

b2∑
i=1

iδ
′
4

∏b2
j=iB5(j)

x
B5(b2)
2

∫ x2

0

dkb2k
B5(b2)−B5(b2−1)−1
b2

· · · kB5(i+1)−B5(i)−1
i+1

∫ ki+1

0

dki k
B5(i)−1
i

(
k
δ′′4−2
i+1 − k

δ′′4−2
i

)
e2≈ h4x

δ′′4−2
2

b2∑
i=1

iδ
′
4

(δ′′4 − 2) +B5(i)

b2∏
j=i+1

1

1 + (δ′′4 − 2)/B5(j)
.

Recalling that the product (A.5) converges for large values of b2, we approximate its value by a constant that can be
absorbed by m∗4. Through a similar approximation, we write the right hand side of the expression above, for large
values of b2, as h4x

δ′′4−2
2

∑b2
i=1((δ′′4 − 2) +B5(i))−1. Combining these two approximations we obtain our candidate

for the local Lyapunov function in T4:

V4(x) = m4x
δ4
2 + h4x

δ′′4−2
2

b2∑
i=1

iδ
′
4

(δ′′4 − 2) +B5(i)
.

This function exists for all δ′4 ∈ R, δ4, δ′′4 ∈ R+ and scales homogeneously under S w
l for w = e2 if δ′′4 = δ4 + 2.
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B Alternative scaling procedure
In this section we present an alternative method for the construction of the Lyapunov funtion in the transport regions
T1, T2, T3. In Section 3.2 we required that the candidate Lyapunov function Vi scales homogeneously under all scaling
transformations mapping certain subsets ofWi onto themselves. Now we simply require for Vi to scale homogeneously
under the scaling transformation that maps Ti onto a set of R2

+ that includes Ti itself. In other words, we need the
preimage of Ti under S w

l to be in Ti itself. This way, by the homogeneous scaling assumption it is sufficient to define
Vi on a compact subset of Ti to know Vi in all Ti. Note that for all T1, T2, T3 we have that such a scaling is given by
S w
l with w = (1, 1)/

√
2.

Lemma B.1. For an initial condition x0 = (x1, x2) ∈ T3, the Lyapunov function V 3 solving (3.11) with

h3(x) := h3x
δ′′3
2 λ3(x) and V4(x) = m4x

δ4
2 , (B.1)

for h3 > 0 and m4 = m4(b2) > 0 is well defined for all δ′′3 ∈ R and δ4 > 0. Furthermore, for the choice of constants

δ′′3 = δ4 , (B.2)

we can write V 3(x) = xδ42 (m4 + h3(x1 − b2)).

Proof. By the method of characteristics we obtain V 3 satisfying (3.11) by integrating h3 along the solutions of the set
of ordinary differential equations ẋ = T3x. Recalling by (3.14) that such solutions are moving from x1(0) to b2 on
lines with x2(t) = x2(0), by our choice (B.1) of boundary condition on T34 we obtain

V 3(x) = m4x
δ4
2 +

∫ x1

b2

h3x
δ′′3
2 λ3((z, x2))

1

λ3((z, x2))
dz = m4x

δ4
2 − h3b2x

δ′′3
2 + h3x1x

δ′′3
2 .

This function is clearly well defined in R2
+ for all choices of parameters. Now we see that in order for V 3 to scale

homogeneously under S w
l for all w ∈ W3 we need to have (B.2) for δ′3 > 4 as h3 > 0. This directly implies that V 3

has the desired form.

We note that the function V 3 defined in Lemma B.1 does not scale homogeneously under S w
l . For this reason,

proceed as in [13] and introduce a new “dummy” coordinate λ and a scaling transformation

S
(1,1,1)
l : (x1, x2, χ) 7→ (lx1, lx2, lχ) .

Then, we define the Lyapunov function V 3 in the new set of coordinates as

V 3((x1, x2, χ)) := xδ42 (χm4 + h3(x1 − χb2)) .

It is manifest that this function scales homogeneously under S
(1,1,1)
l .

Lemma B.2. For an initial condition x0 = (x1, x2) ∈ T2, the Lyapunov function V 2 solving (3.11) with

h2(x) := h2(x1 + 5x2)δ
′
2λ3(x) and V3(π23x) = m3(x1 + 5x2)δ3 , (B.3)

for h2 > 0 is well defined for all δ′2 ∈ R and δ3 > 0. Furthermore, for the choice of constants

δ′2 = δ′′3 ,

we have V 2
w∼ lδ2 for w = (1, 1, 1) and δ2 := δ′2 + 1.

31



Proof. We again find the solution to (3.11) in T2 by the method of characteristics. Denoting by γ3(x, π23) the path
along the characteristic of T2 starting at x and ending at π23x and noting that h2( · ) defined in (B.3) is constant on such
a path we have

V 2(x) = V 3(π23x) + h2(x1 + 5x2)δ
′
2

∫
γ3(x,π23x)

λ3(z)
1

λ3(z)
dz .

Consequently, using that π23x = (x1 + 5x2)(1 + 5b1)−1(1, b1) we write the explicit result of the integral as

V 2(x) = (x1 + 5x2)δ4
(
χm4 + h3

(
x1 + 5x2
1 + 5b1

− χb2
))

+ h2(x1 + 5x2)δ
′
2Lb1(x) , (B.4)

for Lb1(x) := x1

√
1 + b−21 sin(arctan(b−11 ) − arctan(1/5))/ sin(arctan(x2/x1) + arctan(b−11 )). By the homo-

geneous scaling property of V 3 under S
(1,1,1)
l we have that V 3(π23x) = m3(x1 + 5x2)δ3 for δ3 := δ′′3 + 1 and

m3 = m3(b1) := h3(b1)δ
′′
3 (1 + b1)δ3 . It is easy to see that the function V 2 from (B.4) scales homogeneously under

S
(1,1,1)
l .

Lemma B.3. For an initial condition x0 = (x1, x2) ∈ T1, the function V 1 solving (3.11) with

h1(x) := h1x
δ′1
1 λ3(x) and V 2(x) = m2x

δ2
1 ,

for h1 > 0 is well defined for all δ′1 ∈ R and δ2 > 0. Furthermore, for the choice of constants

δ′2 = δ′1 , (B.5)

we can write V 1(x) = x
δ′2
1 (m2x1 − h1(x2 − x1/b1)).

Proof. We obtain the Lyapunov function by integrating along the characteristic lines of the transport operator T1.
Noting that these lines satisfy x1(t) = x1(0) for all t > 0 we write

V 1(x) = V 2(π12(x)) + h1

∫ x1/b1

x2

x
δ′1
1 λ3((x1, y))

1

λ3((x1, y))
dy = m2(x)xδ21 − h1x

δ′1
1 (x2 − x1/b1) , (B.6)

for π12(x) = (x1, x1/b1) and

m2(x) := xδ21 (1 + 5/b1)δ2
(
χm4 + h3

(
x1 +

1 + 5/b1
1 + 5b1

− χb2
))

+ h2x
δ′2
1 (1 + b1/5)δ

′
2 .

We immediately recognize that the right hand side of (B.6) scales homogeneously under S
(1,1,1)
l if (B.5) holds,

resulting in the desired definition for V 1( · ) .
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