133 research outputs found

    Visual-motor interactions during action observation are shaped by cognitive context

    Get PDF
    Interactions between the visual system and the motor system during action observation are important for functions such as imitation and action understanding. Here, we asked whether such processes might be influenced by the cognitive context in which actions are performed. We recorded ERPs in a delayed go/no-go task known to induce bidirectional interference between the motor system and the visual system (visuomotor interference). Static images of hand gestures were presented as go stimuli after participants had planned either a matching (congruent) or nonmatching (incongruent) action. Participants performed the identical task in two different cognitive contexts: In one, they focused on the visual image of the hand gesture shown as the go stimulus (image context), whereas in the other, they focused on the hand gesture they performed (action context). We analyzed the N170 elicited by the go stimulus to test the influence of action plans on action observation (motor-to-visual priming). We also analyzed movement-related activity following the go stimulus to examine the influence of action observation on action planning (visual-to-motor priming). Strikingly, the context manipulation reversed the direction of the priming effects: We found stronger motor-to-visual priming in the action context compared with the image context and stronger visual-to-motor priming in the image context compared with the action context. Taken together, our findings indicate that neural interactions between motor and visual processes for executed and observed actions can change depending on task demands and are sensitive to top-down control according to the context

    Attenuation of neural responses in primary visual cortex during the attentional blink

    Get PDF
    Information-processing bottlenecks are characteristic of many cognitive and neural systems. One such bottleneck is revealed by tasks in which rapidly successive stimulus events must be reported. Here, observers missed the second of two visual targets if it occurred within 700 ms of the first [an "attentional blink" (AB)], even though this second target could be reported accurately when the first item was ignored. Isolating neural responses to such rapid events has proven difficult because current magnetic resonance imaging methods rely on relatively sluggish changes in the brain's physiological response to sensory inputs. Here, we overcame this limitation by presenting successive visual targets at different spatial locations, thereby exploiting the retinotopic organization of early cortical visual areas to distinguish neural activity associated with successive target events. We show that neural activity in primary visual cortex is significantly modulated during the AB, and that this activity mirrors behavioral measures of target identification accuracy. The findings suggest that the neural signature of perceptual suppression during processing of rapidly successive stimuli is evident at the earliest stages of cortical sensory processing

    The role of frontoparietal cortex across the functional stages of visual search

    Get PDF
    Areas in frontoparietal cortex have been shown to be active in a range of cognitive tasks and have been proposed to play a key role in goal-driven activities (Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. Distinct brain networks for adaptive and stable task control in humans. , , 11073-11078, 2007; Duncan, J. The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behavior. , , 172-179, 2010). Here, we examine the role this frontoparietal system plays in visual search. Visual search, like many complex tasks, consists of a sequence of operations: target selection, stimulus-response (SR) mapping, and response execution. We independently manipulated the difficulty of target selection and SR mapping in a novel visual search task that involved identical stimulus displays. Enhanced activity was observed in areas of frontal and parietal cortex during both difficult target selection and SR mapping. In addition, anterior insula and ACC showed preferential representation of SR-stage information, whereas the medial frontal gyrus, precuneus, and inferior parietal sulcus showed preferential representation of target selection-stage information. A connectivity analysis revealed dissociable neural circuits underlying visual search. We hypothesize that these circuits regulate distinct mental operations associated with the allocation of spatial attention, stimulus decisions, shifts of task set from selection to SR mapping, and SR mapping. Taken together, the results show frontoparietal involvement in all stages of visual search and a specialization with respect to cognitive operations

    Dynamic Energy Management

    Full text link
    We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar

    Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception

    Get PDF
    Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand

    Systematic review of quality of life and functional outcomes in randomized placebo-controlled studies of medications for attention-deficit/hyperactivity disorder

    Get PDF
    Children, adolescents and adults with attention-deficit/hyperactivity disorder (ADHD) experience functional impairment and poor health-related quality of life (HRQoL) in addition to symptoms of inattention/hyperactivity-impulsivity. To synthesize qualitatively the published evidence from randomized, double-blind, placebo-controlled trials of the effectiveness of pharmacotherapy on functional impairment or HRQoL in patients with ADHD, a systematic PubMed searching and screening strategy was designed to identify journal articles meeting pre-specified criteria. Post hoc analyses and meta-analyses were excluded. HRQoL outcomes, functional outcomes and the principal ADHD symptom-based outcome were extracted from included studies. An effect size of 0.5 versus placebo was used as a threshold for potential clinical relevance (unreported effect sizes were calculated when possible). Of 291 records screened, 35 articles describing 34 studies were included. HRQoL/functioning was usually self-rated in adults and proxy-rated in children/adolescents. Baseline data indicated substantial HRQoL deficits in children/adolescents. Placebo-adjusted effects of medication on ADHD symptoms, HRQoL and functioning, respectively, were statistically or nominally significant in 18/18, 10/12 and 7/9 studies in children/adolescents and 14/16, 9/11 and 9/10 studies in adults. Effect sizes were ≥0.5 versus placebo for symptoms, HRQoL and functioning, respectively, in 14/16, 7/9 and 4/8 studies in children/adolescents; and 6/12, 1/6 and 1/8 studies in adults. Effect sizes were typically larger for stimulants than for non-stimulants, for symptoms than for HRQoL/functioning, and for children/adolescents than for adults. The efficacy of ADHD medication extends beyond symptom control and may help reduce the related but distinct functional impairments and HRQoL deficits in patients with ADHD

    A thalamic reticular networking model of consciousness

    Get PDF
    <p>Abstract</p> <p>[Background]</p> <p>It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents.</p> <p>[Hypotheses]</p> <p>The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated.</p> <p>[Conclusions]</p> <p>I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding previously reported psychological phenomena and neurological symptoms such as blindsight, neglect, the priming effect, the threshold/duration problem, and TRN-impairment resembling coma. This hypothesis can be tested by neurosurgical investigations of thalamocortical loops via the TRN, while simultaneously evaluating the degree to which conscious perception depends on the severity of impairment in a TRN-modulated network.</p

    The what and why of perceptual asymmetries in the visual domain

    Get PDF
    Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; and in terms of underlying mechanisms, the why of the asymmetries. Tthe within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. between-visual field asymmetries have been reported for a wide range of perceptual phenomena. foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds true for object or face recognition and reading performance. upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. Iin contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, the primary why, but can be also susceptible to visual experience, the critical why (promotes or blocks the asymmetries by altering neural functions)

    The Emergence of Emotions

    Get PDF
    Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior
    corecore