207 research outputs found

    A Quadratic Programming Approach to Quasi-Static Whole-Body Manipulation

    Get PDF
    This paper introduces a local motion planning method for robotic systems with manipulating limbs, moving bases (legged or wheeled), and stance stability constraints arising from the presence of gravity. We formulate the problem of selecting local motions as a linearly constrained quadratic program (QP), that can be solved efficiently. The solution to this QP is a tuple of locally optimal joint velocities. By using these velocities to step towards a goal, both a path and an inverse-kinematic solution to the goal are obtained. This formulation can be used directly for real-time control, or as a local motion planner to connect waypoints. This method is particularly useful for high-degree-of-freedom mobile robotic systems, as the QP solution scales well with the number of joints. We also show how a number of practically important geometric constraints (collision avoidance, mechanism self-collision avoidance, gaze direction, etc.) can be readily incorporated into either the constraint or objective parts of the formulation. Additionally, motion of the base, a particular joint, or a particular link can be encouraged/discouraged as desired. We summarize the important kinematic variables of the formulation, including the stance Jacobian, the reach Jacobian, and a center of mass Jacobian. The method is easily extended to provide sparse solutions, where the fewest number of joints are moved, by iteration using Tibshirani’s method to accommodate an l_1 regularizer. The approach is validated and demonstrated on SURROGATE, a mobile robot with a TALON base, a 7 DOF serial-revolute torso, and two 7 DOF modular arms developed at JPL/Caltech

    Understanding the minds of others: a neuroimaging meta-analysis

    Get PDF
    Theory of mind (ToM) is an important skill that refers broadly to the capacity to understand the mental states of others. A large number of neuroimaging studies have focused on identifying the functional brain regions involved in ToM, but many important questions remain with respect to the neural networks implicated in specific types of ToM tasks. In the present study, we conducted a series of activation likelihood estimation (ALE) meta-analyses on 144 datasets (involving 3150 participants) to address these questions. The ALE results revealed common regions shared across all ToM tasks and broader task parameters, but also some important dissociations. In terms of commonalities, consistent activation was identified in the medial prefrontal cortex and bilateral temporoparietal junction. On the other hand, ALE contrast analyses on our dataset, as well as meta-analytic connectivity modelling (MACM) analyses on the BrainMap database, indicated that different types of ToM tasks reliably elicit activity in unique brain areas. Our findings provide the most accurate picture to date of the neural networks that underpin ToM function

    Synaesthesia: a distinct entity that is an emergent feature of adaptive neurocognitive differences

    Get PDF
    In this article, I argue that synaesthesia is not on a continuum with neurotypical cognition. Synaesthesia is special: its phenomenology is different; it has distinct causal mechanisms; and is likely to be associated with a distinct neurocognitive profile. However, not all synaesthetes are the same, and there are quantifiable differences between them. In particular, the number of types of synaesthesia that a person possesses is a hitherto underappreciated variable that predicts cognitive differences along a number of dimensions (mental imagery, sensory sensitivity, attention to detail). Together with enhanced memory, this may constitute a common core of abilities that may go some way to explaining why synaesthesia might have evolved. I argue that the direct benefits of synaesthesia are generally limited (i.e. the synaesthetic associations do not convey novel information about the world) but, nevertheless, synaesthesia may develop due to other adaptive functions (e.g. perceptual ability, memory) that necessitate changes to design features of the brain. The article concludes by suggesting that synaesthesia forces us to reconsider what we mean by a ‘normal’ mind/brain. There may be multiple ‘normal’ neurodevelopmental trajectories that can sculpt very different ways of experiencing the world, of which synaesthesia is but one. This article is part of a discussion meeting issue ‘Bridging senses: novel insights from synaesthesia’

    Executive "brake failure" following deactivation of human frontal lobe

    Get PDF
    In the course of daily living, humans frequently encounter situations in which a motor activity, once initiated, becomes unnecessary or inappropriate. Under such circumstances, the ability to inhibit motor responses can be of vital importance. Although the nature of response inhibition has been studied in psychology for several decades, its neural basis remains unclear. Using transcranial magnetic stimulation, we found that temporary deactivation of the pars opercularis in the right inferior frontal gyrus selectively impairs the ability to stop an initiated action. Critically, deactivation of the same region did not affect the ability to execute responses, nor did it influence physiological arousal. These findings confirm and extend recent reports that the inferior frontal gyrus is vital for mediating response inhibition

    Influence of hand position on the near-effect in 3D attention

    Get PDF
    Voluntary reorienting of attention in real depth situations is characterized by an attentional bias to locations near the viewer once attention is deployed to a spatially cued object in depth. Previously this effect (initially referred to as the ‘near-effect’) was attributed to access of a 3D viewer-centred spatial representation for guiding attention in 3D space. The aim of this study was to investigate whether the near-bias could have been associated with the position of the response-hand, always near the viewer in previous studies investigating endogenous attentional shifts in real depth. In Experiment 1, the response-hand was placed at either the near or far target depth in a depth cueing task. Placing the response-hand at the far target depth abolished the near-effect, but failed to bias spatial attention to the far location. Experiment 2 showed that the response-hand effect was not modulated by the presence of an additional passive hand, whereas Experiment 3 confirmed that attentional prioritization of the passive hand was not masked by the influence of the responding hand on spatial attention in Experiment 2. The pattern of results is most consistent with the idea that response preparation can modulate spatial attention within a 3D viewer-centred spatial representation

    Shifting attention in viewer- and object-based reference frames after unilateral brain injury

    Get PDF
    The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection

    Executive "Brake Failure" following deactivation of human frontal lobe

    Get PDF
    In the course of daily living, humans frequently encounter situations in which a motor activity, once initiated, becomes unnecessary or inappropriate. Under such circumstances, the ability to inhibit motor responses can be of vital importance. Although the nature of response inhibition has been studied in psychology for several decades, its neural basis remains unclear. Using transcranial magnetic stimulation, we found that temporary deactivation of the pars opercularis in the right inferior frontal gyrus selectively impairs the ability to stop an initiated action. Critically, deactivation of the same region did not affect the ability to execute responses, nor did it influence physiological arousal. These findings confirm and extend recent reports that the inferior frontal gyrus is vital for mediating response inhibition

    Orienting asymmetries and lateralized processing of sounds in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lateralized processing of speech is a well studied phenomenon in humans. Both anatomical and neurophysiological studies support the view that nonhuman primates and other animal species also reveal hemispheric differences in areas involved in sound processing. In recent years, an increasing number of studies on a range of taxa have employed an orienting paradigm to investigate lateralized acoustic processing. In this paradigm, sounds are played directly from behind and the direction of turn is recorded. This assay rests on the assumption that a hemispheric asymmetry in processing is coupled to an orienting bias towards the contralateral side. To examine this largely untested assumption, speech stimuli as well as artificial sounds were presented to 224 right-handed human subjects shopping in supermarkets in Germany and in the UK. To verify the lateralized processing of the speech stimuli, we additionally assessed the brain activation in response to presentation of the different stimuli using functional magnetic resonance imaging (fMRI).</p> <p>Results</p> <p>In the naturalistic behavioural experiments, there was no difference in orienting behaviour in relation to the stimulus material (speech, artificial sounds). Contrary to our predictions, subjects revealed a significant left bias, irrespective of the sound category. This left bias was slightly but not significantly stronger in German subjects. The fMRI experiments confirmed that the speech stimuli evoked a significant left lateralized activation in BA44 compared to the artificial sounds.</p> <p>Conclusion</p> <p>These findings suggest that in adult humans, orienting biases are not necessarily coupled with lateralized processing of acoustic stimuli. Our results – as well as the inconsistent orienting biases found in different animal species – suggest that the orienting assay should be used with caution. Apparently, attention biases, experience, and experimental conditions may all affect head turning responses. Because of the complexity of the interaction of factors, the use of the orienting assay to determine lateralized processing of sound stimuli is discouraged.</p

    Pseudo-Synesthesia through Reading Books with Colored Letters

    Get PDF
    Background Synesthesia is a phenomenon where a stimulus produces consistent extraordinary subjective experiences. A relatively common type of synesthesia involves perception of color when viewing letters (e.g. the letter ‘a’ always appears as light blue). In this study, we examine whether traits typically regarded as markers of synesthesia can be acquired by simply reading in color. Methodology/Principal Findings Non-synesthetes were given specially prepared colored books to read. A modified Stroop task was administered before and after reading. A perceptual crowding task was administered after reading. Reading one book (>49,000 words) was sufficient to induce effects regarded as behavioral markers for synesthesia. The results of the Stroop tasks indicate that it is possible to learn letter-color associations through reading in color (F(1, 14) = 5.85, p = .030). Furthermore, Stroop effects correlated with subjective reports about experiencing letters in color (r(13) = 0.51, p = .05). The frequency of viewing letters is related to the level of association as seen by the difference in the Stroop effect size between upper- and lower-case letters (t(14) = 2.79, p = .014) and in a subgroup of participants whose Stroop effects increased as they continued to read in color. Readers did not show significant performance advantages on the crowding task compared to controls. Acknowledging the many differences between trainees and synesthetes, results suggest that it may be possible to acquire a subset of synesthetic behavioral traits in adulthood through training. Conclusion/Significance To our knowledge, this is the first evidence of acquiring letter-color associations through reading in color. Reading in color appears to be a promising avenue in which we may explore the differences and similarities between synesthetes and non-synesthetes. Additionally, reading in color is a plausible method for a long-term ‘synesthetic’ training program
    • …
    corecore