168 research outputs found

    Modification of Statistical Threading in Two-Component Pseudorotaxane Melts Using the Amphiphilic Approach and Variations in the Confinement Geometry

    Get PDF
    Recently we described a coarse-grained model of poly(ethylene oxide) and then employed that model to study the amount of spontaneous threading of cyclic molecules by linear chains in the melt [C. A. Helfer, G. Xu, W. L. Mattice, and C. Pugh, Macromolecules 36, 10071 (2003)]. Since the amount of statistical threading at equilibrium is small, there is interest in identifying physical changes in the system that will increase the threading. We now use that coarse-grained model to investigate the effect on threading of various hypothetical (but feasible) modifications to the two-component system of macrocycles and linear chains in the melt, and different confinement geometries, that can bring about correlations in the arrangement of the rings. Our work follows on the concept of an amphiphilic approach [C. Pugh, J.-Y. Bae, J. R. Scott, and C. L. Wilkins, Macromolecules 30, 8139 (1997)] for increasing the statistical threading in homopolyrotaxane melts. We investigate whether introducing such correlations in the macrocycles can increase the spontaneous threading. This paper shows that some of our modifications can yield more than double the amount of threading seen in purely statistical mixing. (C) 2004 American Institute of Physics

    Sediment Loading and Water Quality of Field Run-off Water

    Get PDF
    Intensive tillage is commonly employed in many agronomic production systems in the United States. Tillage operations may include disking the field, re-smoothing the soil, seedbed formation, reducing the seedbeds, and shallow cultivation for weed control. Tillage practices in conjunction with rainfall have been linked to soil erosion, which may adversely affect the environment. The soil erosion dynamics of two large-scale production cotton fields that utilized both modern-conventional and conservation-tillage technology were examined. Studies were conducted in the cotton-producing region of southeast Arkansas in the Bayou Bartholomew watershed. Bayou Bartholomew is currently listed by the United States Environmental Protection Agency as an impacted stream. The soils at these sites were related, coarse-textured alfisols. One field was cropped to conventionally tilled cotton and intensively tilled. The second field was cropped to cotton using modern conservation tillage technology. Both fields were furrow-flow irrigated using piped water. Intense rainfall usually occurs in the Mississippi River Delta Region, particularly in the winter and spring months. Conservation tillage proved to be immediately beneficial in controlling soil erosion and sediment loss due to field run-off water from rainfall. Sediment content of run-off water induced by rainfall from the conventionally tilled cotton field was significantly greater than the sediments found in run-off water from the conservation tilled cotton field. The amount of sediment found in rainfall run-off water decreased more rapidly with time under conservation tillage than under conventional tillage. The tillage system made little difference in sediment content of run-off water from irrigation. The water flow from furrow irrigation is typically slow and steady. There is no droplet impact on the ground from furrow-flow irrigation as there would be from rainfall. Apparently, the gentle flow of the water down the furrows was insufficient to dislodge large numbers of soil particles

    Competition for hydrogen bond formation in the helix-coil transition and protein folding

    Get PDF
    The problem of the helix-coil transition of biopolymers in explicit solvents, like water, with the ability for hydrogen bonding with solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds. The balance between the two types of hydrogen bonding can be shifted to either direction through changes not only in temperature, but also by pressure, mechanical force, osmotic stress or other external influences. Both polypeptides and polynucleotides are considered within a unified formalism. Our approach provides an explanation of the experimental difficulty of observing the reentrant transition with pressure; and underscores the advantage of pulling experiments for studies of DNA. Results are discussed and compared with those reported in a number of recent publications with which a significant level of agreement is obtained.Comment: 21 pages, 3 figures, submitted to Phys Rev

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    Regulation of Sodium Channel Function by Bilayer Elasticity: The Importance of Hydrophobic Coupling. Effects of Micelle-forming Amphiphiles and Cholesterol

    Get PDF
    Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function
    corecore