41 research outputs found

    Plunging when drilling: Effect of using blunt drill bits

    Get PDF
    Objective: Plunging when drilling can be a detrimental factor in patient care. There is, although, a general lack of information regarding the surgeon's performance in this skill. The aim of this study was to determine the effect that using sharp or blunt instruments had on the drill bit's soft tissue penetration, using a simulator. Materials and Methods: Surgeons taking part in an International Trauma Course were invited to participate. Two groups were defined: experienced and inexperienced surgeons. Twelve holes were drilled in the following order: 3 holes with a sharp drill bit in normal bone (SNB), 3 holes with a sharp drill bit in osteoporotic bone (SOB), 3 holes with a blunt drill bit in normal bone, and 3 holes with a blunt drill bit in osteoporotic bone. Mean values and Student t tests were used for statistical analysis. Results: Thirty-seven surgeons participated, 20 experienced and 17 inexperienced surgeons. Mean plunging depths for SNB, SOB, blunt drill bit in normal bone, and blunt drill bit in osteoporotic bone were, respectively, 5.1, 5.4, 21.1, and 13.9 mm for experienced surgeons and 7.6, 7.7, 22, and 15.9 mm for inexperienced surgeons. Drilling with SNB and with SOB was statistically different, with inexperienced surgeons plunging 2.5 mm (P = 0.31) and 2.6 mm (P = 0.042) deeper, respectively. There was a difference (P less than 0.001) between sharp and blunt drill bits in all drilling conditions for both the groups. Conclusions: Our study showed a significant difference in plunging depth when sharp or bunt drill bit was being used. Surgeons, regardless of their experience level, penetrate over 20 mm in normal bone and over 10 mm in osteoporotic bone. Copyright © 2012 by Lippincott Williams and Wilkins

    Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies

    Get PDF
    Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease

    Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature.

    Get PDF
    The bone marrow is a central organ of the immune system, which hosts complex interactions of bone and immune compartments critical for hematopoiesis, immunological memory, and bone regeneration. Although these processes take place over months, most existing imaging techniques allow us to follow snapshots of only a few hours, at subcellular resolution. Here, we develop a microendoscopic multi-photon imaging approach called LIMB (longitudinal intravital imaging of the bone marrow) to analyze cellular dynamics within the deep marrow. The approach consists of a biocompatible plate surgically fixated to the mouse femur containing a gradient refractive index lens. This microendoscope allows highly resolved imaging, repeatedly at the same regions within marrow tissue, over months. LIMB reveals extensive vascular plasticity during bone healing and steady-state homeostasis. To our knowledge, this vascular plasticity is unique among mammalian tissues, and we expect this insight will decisively change our understanding of essential phenomena occurring within the bone marrow

    Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models

    No full text
    The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair

    Design, characterisation and in vivo testing of a new, adjustable stiffness, external fixator for the rat femur

    No full text
    Very little is known about the infl uence of the mechanical environment on the healing of large segmental defects. This partly reflects the lack of standardised, well characterised technologies to enable such studies. Here we report the design, construction and characterisation of a novel external fixator for use in conjunction with rat femoral defects. This device not only imposes a predetermined axial stiffness on the lesion, but also enables the stiffness to be changed during the healing process. The main frame of the fi xator consists of polyethylethylketone with titanium alloy mounting pins. The stiffness of the fi xator is determined by interchangeable connection elements of different thicknesses. Fixators were shown to stabilise 5 mm femoral defects in rats in vivo for at least 8 weeks during unrestricted cage activity. No distortion or infections, including pin infections, were noted. The healing process was simulated in vitro by inserting into a 5 mm femoral defect, materials whose Young’s moduli approximated those of the different tissues present in regenerating bone. These studies confirmed that, although the external fixator is the major determinant of axial stiffness during the early phase of healing, the regenerate within the lesion subsequently dominates this property. There is much clinical interest in altering the mechanics of the defect to enhance bone healing. Our data suggest that, if alteration of the mechanical environment is to be used to modulate the healing of large segmental defects, this needs to be performed before the tissue properties become dominant

    Genetic variation in mice affects closed femoral fracture pattern outcomes

    No full text
    The purpose of this study was to determine whether differences in structural and material properties of bone between different mouse strains influence the fracture patterns produced under experimental fracture conditions. Femurs of C57BL/6 (B6), C3H/HeJ (C3H), and DBA/2 (DBA) strains were evaluated using micro-computed tomography (ÎŒCT), measurements derived from radiographic images and mechanical testing to determine differences in the geometry and mechanical properties. A fracture device was used to create femoral fractures on freshly sacrificed animals using a range of kinetic energies (∌20–80 mJ) which were classified as transverse, oblique, or comminuted. B6 femurs had the lowest bone volume/total volume (BV/TV) and bone mineral density (BMD), thinnest cortex, and had the most variable fracture patterns, with 77.5% transverse, 15% oblique, and 7.5% comminuted fractures. In contrast, C3H had the highest BV/TV, BMD, and thickest cortices, resulting in 97.5% transverse, 2.5% oblique, and 0% comminuted fractures. DBA had an intermediate BV/TV and thickness of cortices, with BMD similar to C3H, resulting in 92.9% transverse, 7.1% oblique, and 0% comminuted fractures. A binomial logistic regression confirmed that bone morphometry was the single strongest predictor of the resulting fracture pattern. This study demonstrated that the reproducibility of closed transverse femoral fractures was most influenced by the structural and material properties of the bone characteristics in each strain, rather than the kinetic energy or body weight of the mice. This was evidenced through geometric analysis of X-ray and ÎŒCT data, and further supported by the bone mineral density measurements from each strain, derived from ÎŒCT. Furthermore, this study also demonstrated that the use of lower kinetic energies was more than sufficient to reproducibly create transverse fractures, and to avoid severe tissue trauma. The creation of reproducible fracture patterns is important as this often dictates the outcomes of fracture healing, and those studies that do not control this potential variability could lead to a false interpretation of the results

    Development of a novel murine delayed secondary fracture healing in vivo model using periosteal cauterization

    Get PDF
    \u3cp\u3eIntroduction: Delayed union and nonunion development remain a major clinical problematic complication during fracture healing, with partially unclear pathophysiology. Incidences range from 5 to 40% in high-risk patients, such as patients with periosteal damage. The periosteum is essential in adequate fracture healing, especially during soft callus formation. In this study, we hypothesize that inducing periosteal damage in a murine bone healing model will result in a novel delayed union model. Materials and methods: A mid-shaft femoral non-critically sized osteotomy was created in skeletally mature C57BL/6 mice and stabilized with a bridging plate. In half of the mice, a thin band of periosteum adjacent to the osteotomy was cauterized. Over 42 days of healing, radiographic, biomechanical, micro-computed tomography and histological analysis was performed to assess the degree of fracture healing. Results: Analysis showed complete secondary fracture healing in the control group without periosteal injury. Whereas the periosteal injury group demonstrated less than half as much maximum callus volume (p < 0.05) and bridging, recovery of stiffness and temporal expression of callus growth and remodelling was delayed by 7–15 days. Conclusion: This paper introduces a novel mouse model of delayed union without a critically sized defect and with standardized biomechanical conditions, which enables further investigation into the molecular biological, biomechanical, and biochemical processes involved in (delayed) fracture healing and nonunion development. This model provides a continuum between normal fracture healing and the development of nonunions.\u3c/p\u3

    Development of a novel murine delayed secondary fracture healing in vivo model using periosteal cauterization

    No full text
    Introduction: Delayed union and nonunion development remain a major clinical problematic complication during fracture healing, with partially unclear pathophysiology. Incidences range from 5 to 40% in high-risk patients, such as patients with periosteal damage. The periosteum is essential in adequate fracture healing, especially during soft callus formation. In this study, we hypothesize that inducing periosteal damage in a murine bone healing model will result in a novel delayed union model. Materials and methods: A mid-shaft femoral non-critically sized osteotomy was created in skeletally mature C57BL/6 mice and stabilized with a bridging plate. In half of the mice, a thin band of periosteum adjacent to the osteotomy was cauterized. Over 42 days of healing, radiographic, biomechanical, micro-computed tomography and histological analysis was performed to assess the degree of fracture healing. Results: Analysis showed complete secondary fracture healing in the control group without periosteal injury. Whereas the periosteal injury group demonstrated less than half as much maximum callus volume (p < 0.05) and bridging, recovery of stiffness and temporal expression of callus growth and remodelling was delayed by 7–15 days. Conclusion: This paper introduces a novel mouse model of delayed union without a critically sized defect and with standardized biomechanical conditions, which enables further investigation into the molecular biological, biomechanical, and biochemical processes involved in (delayed) fracture healing and nonunion development. This model provides a continuum between normal fracture healing and the development of nonunions
    corecore