1,312 research outputs found

    Depression in Belgian first-year university students: A longitudinal study of self-definition, interpersonal relatedness, mentalizing, and integration

    Get PDF
    Despite evidence of increasing prevalence of depression in university students, few studies investigated how depression evolves over the first months at university. We investigate severity of depression among first-year university students during their first semester at university, and whether it was associated with impairments in personality, mentalizing (or reflective functioning) and social and academic integration. Participants in this two-wave prospective study were 377 Belgian first-year students in 2018 and 2019. Results showed that maladaptive interpersonal relatedness and self-definition at the start of the first semester (T1) were prospectively associated with increases in the prevalence and severity of depression at the end of the semester (T2). Uncertainty, but not certainty, with regard to mentalizing was positively associated with severity of depression at T2 and mediated the association between personality dimensions and severity of depression. The implications of these findings for depression prevention and intervention strategies in first-year university students are discussed

    Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists

    Get PDF
    Purpose: The aim of this study was to assess the dose-response relationships between different training load methods and aerobic fitness and performance in competitive road cyclists. Method: Training data from 15 well-trained competitive cyclists were collected during a 10-week (December – March) pre-season training period. Before and after the training period, participants underwent a laboratory incremental exercise test with gas exchange and lactate measures and a performance assessment using an 8-min time trial (8MT). Internal training load was calculated using Banister’s TRIMP (bTRIMP), Edwards’ TRIMP (eTRIMP), individualized TRIMP (iTRIMP), Lucia’s TRIMP (luTRIMP) and session-RPE (sRPE). External load was measured using Training Stress Score™ (TSS). Results: Large to very large relationships (r = 0.54-0.81) between training load and changes in submaximal fitness variables (power at 2 and 4 mmol·L-1) were observed for all training load calculation methods. The strongest relationships with changes in aerobic fitness variables were observed for iTRIMP (r = 0.81 [95% CI: 0.51 to 0.93, r = 0.77 [95% CI 0.43 to 0.92]) and TSS (r = 0.75 [95% CI 0.31 to 0.93], r = 0.79 [95% CI: 0.40 to 0.94]). The highest dose-response relationships with changes in the 8MT performance test were observed for iTRIMP (r = 0.63 [95% CI 0.17 to 0.86]) and luTRIMP (r = 0.70 [95% CI: 0.29 to 0.89). Conclusions: The results show that training load quantification methods that integrate individual physiological characteristics have the strongest dose-response relationships, suggesting this to be an essential factor in the quantification of training load in cycling

    Risk assessment in relation to the detection of small pulmonary nodules

    Get PDF
    The National Lung Cancer Screening trial (NLST) demonstrated that individuals assigned to the LDCT screening arm had a 20% lower mortality than those who were assigned to the conventional chest radiography. The NLST was thoroughly analyzed by the US Preventive Task Force on CT Screening and they recommended that lung cancer screening should be implemented. A number of other countries have also recommended implementation, whilst others are awaiting the outcome of the NELSON Trial. However, recommendations for the management of CT screen detected nodules have only recently had any clarity. The management of CT detected nodules in the NLST was based on the identification and reporting of 4 mm diameter nodules found on the CT screens but there was no NLST radiology protocol in place for the management of nodules. The use of volumetric analysis is not routinely used in the USA and there is still a reliance on utilising the CT nodule diameter as the management parameter. The first pulmonary risk model was developed by the Canadians, utilising data sets from the Pan-Canadian Early detection of Lung cancer (PanCan) and validated in the chemoprevention trial dataset at the British Columbian Agency. This Canadian model, known as the Brock Model, is currently available and has been integrated into the British Thoracic Society guidelines on the management of pulmonary nodules. The American College of Radiology setup a Lung Cancer Screening Committee subgroup on Lung-RADS, to standardize lung cancer screening CT reporting and provide management recommendations. However, it has been recommended that the Lung-RADS system should be revised as the system as it has never been studied in a prospective fashion. The NELSON trial introduced a third screening test, the "indeterminate" screening test result, this was done with the aim to reduce the false-positives CT screening results and also utilized by the UKLS trial successfully. On comparing the radiological CT screen volumetric and diameter based protocols in the NELSON trial, the sensitivity and negative predictive value appeared to be comparable, however a higher specificity and positive predictive value was found for the volume-based protocols, thus confirming the advantage of utilising the volumetric approach over diameter The British Thoracic Society (BTS) has undertaken an in-depth piece of work developing guidelines on the management of pulmonary nodules, utilising the wealth of data published by the NELSON team and support the use of volumetric analysis for the management of pulmonary nodules
    • …
    corecore